Edit model card

OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement

OpenCodeInterpreter

[🏠Homepage] | [🛠️Code]


Introduction

OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities.

For further information and related work, refer to our paper: "OpenCodeInterpreter: A System for Enhanced Code Generation and Execution" available on arXiv.

Model Usage

Inference

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path="OpenCodeInterpreter-DS-33B"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()

prompt = "Write a function to find the shared elements from the given two lists."
inputs = tokenizer.apply_chat_template(
        [{'role': 'user', 'content': prompt }],
        return_tensors="pt"
    ).to(model.device)
outputs = model.generate(
    inputs, 
    max_new_tokens=1024,
    do_sample=False,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

Contact

If you have any inquiries, please feel free to raise an issue or reach out to us via email at: [email protected], [email protected]. We're here to assist you!"

Downloads last month
406
GGUF
Model size
33.3B params
Architecture
llama

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Unable to determine this model's library. Check the docs .