Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
llava-1.6-7b-hf-final
This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on an derek-thomas/ScienceQA.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Chat Template
CHAT_TEMPLATE='''<<SYS>>
A chat between an user and an artificial intelligence assistant about Science Question Answering. The assistant gives helpful, detailed, and polite answers to the user's questions.
Based on the image, question and hint, please choose one of the given choices that answer the question.
Give yourself room to think by extracting the image, question and hint before choosing the choice.
Don't return the thinking, only return the highest accuracy choice.
Make sure your answers are as correct as possible.
<</SYS>>
{% for tag, content in messages.items() %}
{% if tag == 'real_question' %}
Now use the following image and question to choose the choice:
{% for message in content %}
{% if message['role'] == 'user' %}[INST] USER: {% else %}ASSISTANT: {% endif %}
{% for item in message['content'] %}
{% if item['type'] == 'text_question' %}
Question: {{ item['question'] }}
{% elif item['type'] == 'text_hint' %}
Hint: {{ item['hint'] }}
{% elif item['type'] == 'text_choice' %}
Choices: {{ item['choice'] }} [/INST]
{% elif item['type'] == 'text_solution' %}
Solution: {{ item['solution'] }}
{% elif item['type'] == 'text_answer' %}
Answer: {{ item['answer'] }}{% elif item['type'] == 'image' %}<image>
{% endif %}
{% endfor %}
{% if message['role'] == 'user' %}
{% else %}
{{eos_token}}
{% endif %}{% endfor %}{% endif %}
{% endfor %}'''
How to use
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
model_id = "Louisnguyen/llava-1.6-7b-hf-final"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
)
model = LlavaNextForConditionalGeneration.from_pretrained(model_id,
quantization_config=quantization_config,
torch_dtype=torch.float16)
model.to("cuda:0")
processor = LlavaNextProcessor.from_pretrained(model_id)
image = example["image"]
question = example["question"]
choices = example["choices"]
hint = example["hint"]
messages_answer = {
"real_question": [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text_question", "question": question},
{"type": "text_hint", "hint": hint},
{"type": "text_choice", "choice": ' or '.join(choices)},
]
}
]
}
# Apply the chat template to format the messages for answer generation
text_answer = processor.tokenizer.apply_chat_template(messages_answer, tokenize=False, add_generation_prompt=True)
# Prepare the inputs for the model to generate the answer
inputs_answer = processor(text=[text_answer.strip()], images=image, return_tensors="pt", padding=True).to('cuda')
# Generate text using the model for the answer
generated_ids_answer = model.generate(**inputs_answer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id)
# Decode the generated text for the answer
generated_texts_answer = processor.batch_decode(generated_ids_answer[:, inputs_answer["input_ids"].size(1):], skip_special_tokens=True)
print(generated_texts_answer)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Accuracy ~80%
Framework versions
- PEFT 0.12.0
- Transformers 4.43.3
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 11
Model tree for Louisnguyen/llava-1.6-7b-hf-final
Base model
llava-hf/llava-v1.6-mistral-7b-hf