File size: 5,398 Bytes
bbd84f3
 
f584119
 
 
 
 
 
 
 
 
 
 
 
1abe35d
f584119
 
 
 
 
 
 
 
1abe35d
f584119
 
 
 
 
 
 
 
1abe35d
f584119
 
 
 
 
 
 
 
1abe35d
f584119
 
 
 
 
 
 
 
1abe35d
f584119
 
 
 
 
 
 
 
1abe35d
f584119
 
 
bbd84f3
f584119
2309357
 
97ae3bf
e52ee89
 
 
 
 
 
2309357
5efe647
 
8423e8b
2309357
 
7e02bab
8423e8b
7e02bab
2309357
 
 
 
 
c285096
 
 
 
af81931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c285096
2309357
 
 
c285096
2309357
 
 
 
 
 
 
 
 
 
 
c285096
 
 
 
 
 
 
 
2309357
 
 
c285096
 
2309357
 
 
e52ee89
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: apache-2.0

model-index:
  - name: BrainTransformers-3B-Chat
    results:
      - task:
          type: text-generation
        dataset:
          name: mmlu
          type: mmlu
        metrics:
          - name: MMLU
            type: MMLU
            value: 63.2
      - task:
          type: text-generation
        dataset:
          name: bbh
          type: bbh
        metrics:
          - name: BBH
            type: BBH
            value: 54.1
      - task:
          type: text-generation
        dataset:
          name: arc-challenge
          type: arc-challenge
        metrics:
          - name: ARC-C
            type: ARC-C
            value: 54.3
      - task:
          type: text-generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - name: HellaSwag
            type: HellaSwag
            value: 72.8
      - task:
          type: text-generation
        dataset:
          name: gsm8k
          type: gsm8k
        metrics:
          - name: GSM8K
            type: GSM8K
            value: 76.3
      - task:
          type: code-generation
        dataset:
          name: humaneval
          type: humaneval
        metrics:
          - name: HumanEval
            type: HumanEval
            value: 40.5
    source:
      name: LumenScopeAI
      url: https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM
---

# BrainTransformers: SNN-LLM

Based on BrainTransformers, BrainGPTForCausalLM is a Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). We are excited to announce that our technical report is now available on arXiv: [BrainTransformers: SNN-LLM](https://arxiv.org/abs/2410.14687)

We plan to further optimize the model at the operator level and adapt it for hardware compatibility, enabling BrainGPTForCausalLM to be deployed on more energy-efficient SNN hardware devices.

The current open-source version retains some floating-point calculations to ensure computational efficiency. We will continue to optimize this. Some detailed explanations are provided in the comments within the source code.

Stay tuned for updates as we continue to refine and expand our research findings.

You can try it online at [www.lumenscopeai.com](http://www.lumenscopeai.com/).


## Model Availability

- The current pre-trained model parameters have been published on Hugging Face.[LumenscopeAI/BrainTransformers-3B-Chat](https://huggingface.co/LumenscopeAI/BrainTransformers-3B-Chat)

- The current pre-trained model parameters have been published on WiseModel. [LumenScopeAI/BrainTransformers-3B-Chat](https://www.wisemodel.cn/models/LumenScopeAI/BrainTransformers-3B-Chat)

## Repository

The github link is: [LumenScopeAI/BrainTransformers-SNN-LLM](https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM)

## Model Performance

Below are the performance metrics of our 3B model on various benchmarks:

### General Tasks

| Dataset | Performance |
|---------|-------------|
| MMLU | 63.2 |
| MMLU-pro | 33.3 |
| MMLU-redux | 61.3 |
| BBH | 54.1 |
| ARC-C | 54.3 |
| Trurhfulqa | 47.1 |
| Winogrande | 68.8 |
| Hellaswag | 72.8 |

### Math and Science Tasks

| Dataset | Performance |
|---------|-------------|
| GPQA | 25.3 |
| Theoremqa | 26.4 |
| MATH | 41.0 |
| MMLU-stem | 60.2 |
| GSM8K | 76.3 |

### Coding and Multilingual Tasks

| Dataset | Performance |
|---------|-------------|
| HumanEval | 40.5 |
| HumanEval+ | 34.6 |
| MBPP | 55.0 |
| MBPP+ | 47.5 |
| MultiPL-E | 39.6 |
| Multi-Exam | 52.6 |
| Multi-Understanding | 73.9 |
| Multi-Mathematics | 47.1 |
| Multi-Translation | 28.2 |

## Usage

### Generate Text
```python
import torch
from transformers import AutoTokenizer, BrainGPTForCausalLM

model_path = "/path/to/your/model"
model = BrainGPTForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def generate_text(messages, max_new_tokens=50):
    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
    
    with torch.no_grad():
        generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
    
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
    return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

# Example usage
messages = [
    {"role": "system", "content": "You are a knowledgeable assistant."},
    {"role": "user", "content": "Explain the Pythagorean theorem."}
]
response = generate_text(messages)
print(response)
```

## Acknowledgments

The model was trained using ANN-Base-Qwen2, with a total of three training stages, including SNN-specific neuron synaptic plasticity training. The technical report is still being prepared. Please note that SNN models do not support ANN fine-tuning techniques. We are currently developing specialized fine-tuning code tools for SNN models. Our open-source model has achieved leading SOTA results, and we welcome your stars.

This repository includes a complete transformers package, which can directly replace the transformers package in your development environment. This allows compatibility with our SNN-Base-LLM without affecting existing usage.