LumenscopeAI's picture
Update README.md
bbd84f3 verified
|
raw
history blame
2.09 kB
metadata
license: apache-2.0

BrainTransformers: SNN-LLM

Based on BrainTransformers, BrainGPTForCausalLM is a Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our technical report will be uploaded to arXiv as soon as possible. We plan to further optimize the model at the operator level and adapt it for hardware compatibility, enabling BrainGPTForCausalLM to be deployed on more energy-efficient SNN hardware devices.

Model Availability

Repository

The github link is: LumenScopeAI/BrainTransformers-SNN-LLM

Usage

Generate Text

import torch
from transformers import AutoTokenizer, BrainGPTForCausalLM

model_path = "/path/to/your/model"
model = BrainGPTForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def generate_text(messages, max_new_tokens=50):
 text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 model_inputs = tokenizer([text], return_tensors="pt").to(device)
 
 with torch.no_grad():
     generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
 
 generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
 return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

# Example usage
messages = [
 {"role": "system", "content": "You are a knowledgeable assistant."},
 {"role": "user", "content": "Explain the Pythagorean theorem."}
]
response = generate_text(messages)
print(response)

license: apache-2.0