FreddeFrallan's picture
Update README.md (#2)
15c3aee
|
raw
history blame
3.92 kB
metadata
language:
  - multilingual
  - af
  - sq
  - am
  - ar
  - az
  - bn
  - bs
  - bg
  - ca
  - zh
  - hr
  - cs
  - da
  - nl
  - en
  - et
  - fr
  - de
  - el
  - hi
  - hu
  - is
  - id
  - it
  - ja
  - mk
  - ml
  - mr
  - pl
  - pt
  - ro
  - ru
  - sr
  - sl
  - es
  - sw
  - sv
  - tl
  - te
  - tr
  - tk
  - uk
  - ur
  - ug
  - uz
  - vi
  - xh

Multilingual-clip: XLM-Roberta-Large-Vit-B-16Plus

Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model only contains the multilingual text encoder. The corresponding image model Vit-B-16Plus can be retrieved via instructions found on mlfoundations open_clip repository on Github. We provide a usage example below.

Requirements

To use both the multilingual text encoder and corresponding image encoder, we need to install the packages multilingual-clip and open_clip_torch.

pip install multilingual-clip
pip install open_clip_torch

Usage

Extracting embeddings from the text encoder can be done in the following way:

from multilingual_clip import pt_multilingual_clip
import transformers

texts = [
    'Three blind horses listening to Mozart.',
    'Älgen är skogens konung!',
    'Wie leben Eisbären in der Antarktis?',
    'Вы знали, что все белые медведи левши?'
]
model_name = 'M-CLIP/XLM-Roberta-Large-Vit-B-16Plus'

# Load Model & Tokenizer
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)

embeddings = model.forward(texts, tokenizer)
print("Text features shape:", embeddings.shape)

Extracting embeddings from the corresponding image encoder:

import torch
import open_clip
import requests
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16-plus-240', pretrained="laion400m_e32")
model.to(device)

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image = preprocess(image).unsqueeze(0).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)

print("Image features shape:", image_features.shape) 

Evaluation results

None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following R@10 results:

Name En De Es Fr Zh It Pl Ko Ru Tr Jp
OpenAI CLIP Vit-B/32 90.3 - - - - - - - - - -
OpenAI CLIP Vit-L/14 91.8 - - - - - - - - - -
OpenCLIP ViT-B-16+- 94.3 - - - - - - - - - -
LABSE Vit-L/14 91.6 89.6 89.5 89.9 88.9 90.1 89.8 80.8 85.5 89.8 73.9
XLM-R Large Vit-B/32 91.8 88.7 89.1 89.4 89.3 89.8 91.4 82.1 86.1 88.8 81.0
XLM-R Vit-L/14 92.4 90.6 91.0 90.0 89.7 91.1 91.3 85.2 85.8 90.3 81.9
XLM-R Large Vit-B/16+ 95.0 93.0 93.6 93.1 94.0 93.1 94.4 89.0 90.0 93.0 84.2

Training/Model details

Further details about the model training and data can be found in the model card.