akkky02's picture
Upload folder using huggingface_hub
aa5b5e2 verified
|
raw
history blame
5.36 kB
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: flan_t5_base_patent
    results: []

flan_t5_base_patent

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9077
  • Accuracy: 0.6922
  • F1 Macro: 0.6251
  • F1 Micro: 0.6922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro
1.3252 0.06 50 1.3453 0.5512 0.4078 0.5512
1.1367 0.13 100 1.1291 0.613 0.4903 0.613
1.1672 0.19 150 1.0973 0.6288 0.5119 0.6288
1.0094 0.26 200 1.0517 0.6368 0.5609 0.6368
0.9798 0.32 250 1.0432 0.6466 0.5584 0.6466
1.1403 0.38 300 1.0146 0.6542 0.5733 0.6542
1.0617 0.45 350 1.0112 0.652 0.5857 0.652
0.9333 0.51 400 1.0339 0.6436 0.5698 0.6436
1.0316 0.58 450 0.9973 0.6622 0.5891 0.6622
0.9675 0.64 500 0.9732 0.6698 0.6110 0.6698
0.9452 0.7 550 0.9900 0.6652 0.5890 0.6652
1.0378 0.77 600 0.9751 0.668 0.6075 0.668
1.0038 0.83 650 0.9483 0.67 0.6076 0.67
0.9509 0.9 700 0.9739 0.6614 0.6000 0.6614
0.9378 0.96 750 0.9684 0.6686 0.5962 0.6686
0.801 1.02 800 0.9589 0.6696 0.6145 0.6696
0.7911 1.09 850 0.9881 0.6606 0.5857 0.6606
0.8237 1.15 900 0.9677 0.6728 0.6116 0.6728
0.828 1.21 950 0.9609 0.6708 0.6069 0.6708
0.8477 1.28 1000 0.9733 0.663 0.6126 0.663
0.6792 1.34 1050 0.9752 0.6804 0.6096 0.6804
0.7903 1.41 1100 0.9644 0.6778 0.6199 0.6778
0.8033 1.47 1150 0.9827 0.663 0.6004 0.663
0.7558 1.53 1200 0.9423 0.6886 0.6196 0.6886
0.767 1.6 1250 0.9510 0.6762 0.6269 0.6762
0.7842 1.66 1300 0.9351 0.689 0.6307 0.689
0.8388 1.73 1350 0.9174 0.6934 0.6275 0.6934
0.7356 1.79 1400 0.9241 0.6914 0.6327 0.6914
0.6714 1.85 1450 0.9077 0.6922 0.6251 0.6922
0.9696 1.92 1500 0.9081 0.6884 0.6169 0.6884
0.7278 1.98 1550 0.9106 0.6888 0.6269 0.6888
0.5103 2.05 1600 0.9648 0.6934 0.6278 0.6934
0.4725 2.11 1650 0.9807 0.687 0.6287 0.687
0.643 2.17 1700 0.9953 0.6912 0.6252 0.6912
0.5967 2.24 1750 0.9662 0.6868 0.6326 0.6868
0.5582 2.3 1800 0.9957 0.6896 0.6307 0.6896
0.5341 2.37 1850 1.0167 0.69 0.6324 0.69
0.494 2.43 1900 1.0182 0.6884 0.6304 0.6884
0.4602 2.49 1950 1.0200 0.6908 0.6376 0.6908
0.5453 2.56 2000 1.0206 0.692 0.6426 0.692
0.5462 2.62 2050 1.0130 0.6904 0.6392 0.6904
0.4283 2.69 2100 1.0353 0.6866 0.6374 0.6866
0.5238 2.75 2150 1.0244 0.691 0.6418 0.691
0.5237 2.81 2200 1.0162 0.6904 0.6388 0.6904
0.6074 2.88 2250 1.0166 0.6938 0.6458 0.6938
0.5846 2.94 2300 1.0134 0.6936 0.6454 0.6936

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2