akkky02's picture
Upload folder using huggingface_hub
143f0de verified
|
raw
history blame
2.21 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert_base_uncased_twitter
    results: []

bert_base_uncased_twitter

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4780
  • Accuracy: 0.7767
  • F1 Macro: 0.7415
  • F1 Micro: 0.7767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro
0.4689 0.37 50 0.4876 0.7583 0.7185 0.7583
0.4675 0.74 100 0.4780 0.7767 0.7415 0.7767
0.4489 1.1 150 0.4803 0.7776 0.7440 0.7776
0.457 1.47 200 0.4820 0.7757 0.7482 0.7757
0.44 1.84 250 0.4857 0.7831 0.7429 0.7831
0.3905 2.21 300 0.4835 0.7739 0.7406 0.7739
0.4276 2.57 350 0.4898 0.7711 0.7452 0.7711
0.3413 2.94 400 0.4929 0.7757 0.7468 0.7757

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2