akkky02's picture
Upload folder using huggingface_hub
6ccfb8f verified
|
raw
history blame
5.35 kB
metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: t5_small_patent
    results: []

t5_small_patent

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9833
  • Accuracy: 0.657
  • F1 Macro: 0.5822
  • F1 Micro: 0.657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro
1.4814 0.06 50 1.4704 0.492 0.3414 0.492
1.3003 0.13 100 1.2652 0.5512 0.3876 0.5512
1.2291 0.19 150 1.2304 0.563 0.4000 0.563
1.142 0.26 200 1.1644 0.5894 0.4586 0.5894
1.0581 0.32 250 1.1396 0.603 0.4563 0.603
1.2415 0.38 300 1.1215 0.613 0.4937 0.613
1.1336 0.45 350 1.1042 0.6172 0.5292 0.6172
1.045 0.51 400 1.0924 0.624 0.5271 0.624
1.1204 0.58 450 1.0897 0.6184 0.5146 0.6184
1.0691 0.64 500 1.0827 0.6236 0.5169 0.6236
0.9782 0.7 550 1.0664 0.6258 0.5303 0.6258
1.081 0.77 600 1.0548 0.638 0.5581 0.638
1.1033 0.83 650 1.0300 0.6398 0.5593 0.6398
1.0946 0.9 700 1.0620 0.632 0.5545 0.632
1.0261 0.96 750 1.0328 0.6422 0.5648 0.6422
0.9153 1.02 800 1.0378 0.6438 0.5706 0.6438
0.9678 1.09 850 1.0520 0.6402 0.5483 0.6402
0.9619 1.15 900 1.0483 0.6408 0.5593 0.6408
0.9972 1.21 950 1.0255 0.6496 0.5685 0.6496
1.027 1.28 1000 1.0296 0.645 0.5742 0.645
0.8248 1.34 1050 1.0331 0.655 0.5812 0.655
0.9405 1.41 1100 1.0208 0.6502 0.5719 0.6502
0.9735 1.47 1150 1.0389 0.6388 0.5744 0.6388
0.9566 1.53 1200 0.9963 0.658 0.5750 0.658
0.9423 1.6 1250 0.9966 0.6496 0.5832 0.6496
0.9248 1.66 1300 0.9953 0.6558 0.5857 0.6558
1.008 1.73 1350 0.9940 0.6588 0.5809 0.6588
0.9098 1.79 1400 0.9833 0.657 0.5822 0.657
0.8679 1.85 1450 0.9842 0.6644 0.5899 0.6644
1.1342 1.92 1500 0.9933 0.6526 0.5762 0.6526
0.9157 1.98 1550 0.9869 0.6626 0.5924 0.6626
0.8084 2.05 1600 0.9909 0.6654 0.5893 0.6654
0.7373 2.11 1650 0.9894 0.6622 0.5965 0.6622
0.9081 2.17 1700 0.9997 0.6614 0.5880 0.6614
0.8064 2.24 1750 0.9998 0.659 0.5919 0.659
0.8519 2.3 1800 1.0031 0.6584 0.5880 0.6584
0.8711 2.37 1850 0.9975 0.6666 0.5981 0.6666
0.7617 2.43 1900 1.0144 0.6584 0.5849 0.6584
0.717 2.49 1950 1.0102 0.6622 0.5903 0.6622
0.857 2.56 2000 1.0059 0.6622 0.5923 0.6622
0.8623 2.62 2050 1.0025 0.664 0.5971 0.664
0.782 2.69 2100 1.0013 0.6644 0.5985 0.6644
0.8018 2.75 2150 1.0044 0.6652 0.5985 0.6652
0.7901 2.81 2200 0.9987 0.6678 0.6030 0.6678
0.8835 2.88 2250 1.0015 0.6644 0.5986 0.6644
0.8679 2.94 2300 0.9994 0.6636 0.5961 0.6636

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2