|
--- |
|
license: apache-2.0 |
|
base_model: albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: Albert-finetuned-stationary-update |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Albert-finetuned-stationary-update |
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7542 |
|
- Accuracy: 0.5967 |
|
- F1: 0.5862 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.3976 | 1.0 | 38 | 0.8830 | 0.6033 | 0.5849 | |
|
| 0.3105 | 2.0 | 76 | 0.9030 | 0.63 | 0.5876 | |
|
| 0.2256 | 3.0 | 114 | 1.2156 | 0.6333 | 0.6366 | |
|
| 0.1788 | 4.0 | 152 | 1.3055 | 0.6 | 0.5857 | |
|
| 0.161 | 5.0 | 190 | 1.2205 | 0.59 | 0.5808 | |
|
| 0.1304 | 6.0 | 228 | 1.5496 | 0.5933 | 0.5804 | |
|
| 0.1046 | 7.0 | 266 | 1.6266 | 0.59 | 0.5915 | |
|
| 0.0966 | 8.0 | 304 | 1.6807 | 0.6033 | 0.5971 | |
|
| 0.0649 | 9.0 | 342 | 1.7279 | 0.5967 | 0.5831 | |
|
| 0.0697 | 10.0 | 380 | 1.7542 | 0.5967 | 0.5862 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|