Edit model card

MUmairAB/bert-ner

The model training notebook is available on my GitHub Repo.

This model is a fine-tuned version of bert-base-cased on Cnoll2003 dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0003
  • Validation Loss: 0.0880
  • Epoch: 19

How to use this model

#Install the transformers library
!pip install transformers

#Import the pipeline
from transformers import pipeline

#Import the model from HuggingFace
checkpoint = "MUmairAB/bert-ner"
model = pipeline(task="token-classification",
                 model=checkpoint)

#Use the model
raw_text = "My name is umair and i work at Swits AI in Antarctica."
model(raw_text)

Model description

Model: "tf_bert_for_token_classification" ``` _________________________________________________________________ Layer (type) Output Shape Param #

bert (TFBertMainLayer) multiple 107719680
dropout_37 (Dropout) multiple 0

classifier (Dense) multiple 6921

Total params: 107,726,601 Trainable params: 107,726,601 Non-trainable params: 0



## Intended uses & limitations

This model can be used for named entity recognition tasks. It is trained on [Conll2003](https://huggingface.co/datasets/conll2003) dataset. The model can classify four types of named entities:
1. persons,
2. locations,
3. organizations, and
4. names of miscellaneous entities that do not belong to the previous three groups.

## Training and evaluation data

The model is evaluated on [seqeval](https://github.com/chakki-works/seqeval) metric and the result is as follows:

{'LOC': {'precision': 0.9655361050328227, 'recall': 0.9608056614044638, 'f1': 0.9631650750341064, 'number': 1837}, 'MISC': {'precision': 0.8789144050104384, 'recall': 0.913232104121475, 'f1': 0.8957446808510638, 'number': 922}, 'ORG': {'precision': 0.9075144508670521, 'recall': 0.9366144668158091, 'f1': 0.9218348623853211, 'number': 1341}, 'PER': {'precision': 0.962011771000535, 'recall': 0.9761129207383279, 'f1': 0.9690110482349771, 'number': 1842}, 'overall_precision': 0.9374068554396423, 'overall_recall': 0.9527095254123191, 'overall_f1': 0.944996244053084, 'overall_accuracy': 0.9864013657502796}


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17560, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1775     | 0.0635          | 0     |
| 0.0470     | 0.0559          | 1     |
| 0.0278     | 0.0603          | 2     |
| 0.0174     | 0.0603          | 3     |
| 0.0124     | 0.0615          | 4     |
| 0.0077     | 0.0722          | 5     |
| 0.0060     | 0.0731          | 6     |
| 0.0038     | 0.0757          | 7     |
| 0.0043     | 0.0731          | 8     |
| 0.0041     | 0.0735          | 9     |
| 0.0019     | 0.0724          | 10    |
| 0.0019     | 0.0786          | 11    |
| 0.0010     | 0.0843          | 12    |
| 0.0008     | 0.0814          | 13    |
| 0.0011     | 0.0867          | 14    |
| 0.0008     | 0.0883          | 15    |
| 0.0005     | 0.0861          | 16    |
| 0.0005     | 0.0869          | 17    |
| 0.0003     | 0.0880          | 18    |
| 0.0003     | 0.0880          | 19    |


### Framework versions

- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
Downloads last month
43
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MUmairAB/bert-ner

Finetuned
(1932)
this model

Dataset used to train MUmairAB/bert-ner