File size: 2,025 Bytes
df2042f b082a73 df2042f 7609a59 f7969d5 6d7c924 6fbee03 b46a771 6dcdecd 06b1f28 03f2a75 08943d1 f5bd078 ecc8bbd 359ab79 409d507 b082a73 df2042f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MUmairAB/bert-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MUmairAB/bert-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0011
- Validation Loss: 0.0867
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17560, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1775 | 0.0635 | 0 |
| 0.0470 | 0.0559 | 1 |
| 0.0278 | 0.0603 | 2 |
| 0.0174 | 0.0603 | 3 |
| 0.0124 | 0.0615 | 4 |
| 0.0077 | 0.0722 | 5 |
| 0.0060 | 0.0731 | 6 |
| 0.0038 | 0.0757 | 7 |
| 0.0043 | 0.0731 | 8 |
| 0.0041 | 0.0735 | 9 |
| 0.0019 | 0.0724 | 10 |
| 0.0019 | 0.0786 | 11 |
| 0.0010 | 0.0843 | 12 |
| 0.0008 | 0.0814 | 13 |
| 0.0011 | 0.0867 | 14 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|