MUmairAB commited on
Commit
48040bb
1 Parent(s): 5d93b89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -5
README.md CHANGED
@@ -2,9 +2,20 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_keras_callback
 
 
 
5
  model-index:
6
  - name: MUmairAB/bert-ner
7
  results: []
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
@@ -12,23 +23,65 @@ probably proofread and complete it, then remove this comment. -->
12
 
13
  # MUmairAB/bert-ner
14
 
15
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
 
 
16
  It achieves the following results on the evaluation set:
17
  - Train Loss: 0.0003
18
  - Validation Loss: 0.0880
19
  - Epoch: 19
20
 
 
21
  ## Model description
22
 
23
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Intended uses & limitations
26
 
27
- More information needed
 
 
 
 
28
 
29
  ## Training and evaluation data
30
 
31
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## Training procedure
34
 
@@ -69,4 +122,4 @@ The following hyperparameters were used during training:
69
  - Transformers 4.30.2
70
  - TensorFlow 2.12.0
71
  - Datasets 2.13.1
72
- - Tokenizers 0.13.3
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_keras_callback
5
+ - named entity recognition
6
+ - bert-base finetuned
7
+ - umair akram
8
  model-index:
9
  - name: MUmairAB/bert-ner
10
  results: []
11
+ datasets:
12
+ - conll2003
13
+ language:
14
+ - en
15
+ metrics:
16
+ - seqeval
17
+ library_name: keras
18
+ pipeline_tag: token-classification
19
  ---
20
 
21
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
 
23
 
24
  # MUmairAB/bert-ner
25
 
26
+ The model training notebook is available on my [GitHub Repo](https://github.com/MUmairAB/BERT-based-NER-using-HuggingFace-Transformers/tree/main).
27
+
28
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on [Cnoll2003](https://huggingface.co/datasets/conll2003) dataset.
29
  It achieves the following results on the evaluation set:
30
  - Train Loss: 0.0003
31
  - Validation Loss: 0.0880
32
  - Epoch: 19
33
 
34
+
35
  ## Model description
36
 
37
+ Model: "tf_bert_for_token_classification"
38
+ _________________________________________________________________
39
+ Layer (type) Output Shape Param #
40
+ =================================================================
41
+ bert (TFBertMainLayer) multiple 107719680
42
+
43
+ dropout_37 (Dropout) multiple 0
44
+
45
+ classifier (Dense) multiple 6921
46
+
47
+ =================================================================
48
+ Total params: 107,726,601
49
+ Trainable params: 107,726,601
50
+ Non-trainable params: 0
51
+ _________________________________________________________________
52
 
53
  ## Intended uses & limitations
54
 
55
+ This model can be used for named entity recognition tasks. It is trained on [Conll2003](https://huggingface.co/datasets/conll2003) dataset. The model can classify four types of named entities:
56
+ 1. persons,
57
+ 2. locations,
58
+ 3. organizations, and
59
+ 4. names of miscellaneous entities that do not belong to the previous three groups.
60
 
61
  ## Training and evaluation data
62
 
63
+ The model is evaluated on [seqeval](https://github.com/chakki-works/seqeval) metric and the result is as follows:
64
+
65
+ {'LOC': {'precision': 0.9655361050328227,
66
+ 'recall': 0.9608056614044638,
67
+ 'f1': 0.9631650750341064,
68
+ 'number': 1837},
69
+ 'MISC': {'precision': 0.8789144050104384,
70
+ 'recall': 0.913232104121475,
71
+ 'f1': 0.8957446808510638,
72
+ 'number': 922},
73
+ 'ORG': {'precision': 0.9075144508670521,
74
+ 'recall': 0.9366144668158091,
75
+ 'f1': 0.9218348623853211,
76
+ 'number': 1341},
77
+ 'PER': {'precision': 0.962011771000535,
78
+ 'recall': 0.9761129207383279,
79
+ 'f1': 0.9690110482349771,
80
+ 'number': 1842},
81
+ 'overall_precision': 0.9374068554396423,
82
+ 'overall_recall': 0.9527095254123191,
83
+ 'overall_f1': 0.944996244053084,
84
+ 'overall_accuracy': 0.9864013657502796}
85
 
86
  ## Training procedure
87
 
 
122
  - Transformers 4.30.2
123
  - TensorFlow 2.12.0
124
  - Datasets 2.13.1
125
+ - Tokenizers 0.13.3