|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-cnn-dailymail |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: summarization |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
config: 3.0.0 |
|
split: train |
|
args: 3.0.0 |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 32.8352 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-cnn-dailymail |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7294 |
|
- Rouge1: 32.8352 |
|
- Rouge2: 17.0633 |
|
- Rougel: 29.0888 |
|
- Rougelsum: 30.8226 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 1.0 | 8973 | 1.9272 | 31.6634 | 16.1653 | 28.1624 | 29.7819 | |
|
| No log | 2.0 | 17946 | 1.8282 | 32.1032 | 16.4388 | 28.4914 | 30.1856 | |
|
| No log | 3.0 | 26919 | 1.7967 | 32.5721 | 16.8392 | 28.8483 | 30.5764 | |
|
| 2.1615 | 4.0 | 35892 | 1.7640 | 32.6788 | 16.94 | 28.994 | 30.6883 | |
|
| 2.1615 | 5.0 | 44865 | 1.7450 | 32.8129 | 17.048 | 29.0788 | 30.8106 | |
|
| 2.1615 | 6.0 | 53838 | 1.7379 | 32.7074 | 16.9641 | 28.9745 | 30.7043 | |
|
| 2.1615 | 7.0 | 62811 | 1.7317 | 32.7692 | 17.0116 | 29.0395 | 30.7685 | |
|
| 2.0886 | 8.0 | 71784 | 1.7294 | 32.8352 | 17.0633 | 29.0888 | 30.8226 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|