Magpie Open Recipes
Collection
Open-aligned models using Magpie datasets.
β’
11 items
β’
Updated
β’
1
Project Web: https://magpie-align.github.io/
Arxiv Technical Report: https://arxiv.org/abs/2406.08464
Codes: https://github.com/magpie-align/magpie
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on Magpie-Align/Magpie-Pro-MT-300K-v0.1 dataset.
It achieves performance comparable with the official Llama-3-8B-Instruct Model with SFT only!
License: Please follow Meta Llama 3 Community License.
Conversation Template: Please use Llama 3 official chat template for the best performance.
If you find the model, data, or code useful, please cite our paper:
@article{xu2024magpie,
title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing},
author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin},
year={2024},
eprint={2406.08464},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8807 | 0.0007 | 1 | 0.9001 |
0.5113 | 0.3337 | 464 | 0.5178 |
0.4668 | 0.6673 | 928 | 0.4792 |
0.4492 | 1.0010 | 1392 | 0.4582 |
0.3498 | 1.3205 | 1856 | 0.4575 |
0.3525 | 1.6542 | 2320 | 0.4555 |
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-3-8B-Magpie-Pro-300K-MT
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Base model
meta-llama/Meta-Llama-3-8B