facebook/detr-resnet-50-dc5

This model is a fine-tuned version of facebook/detr-resnet-50-dc5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5836
  • Map: 0.5257
  • Map 50: 0.6508
  • Map 75: 0.6241
  • Map Small: 0.0
  • Map Medium: 0.4752
  • Map Large: 0.7513
  • Mar 1: 0.1853
  • Mar 10: 0.6
  • Mar 100: 0.7147
  • Mar Small: 0.0
  • Mar Medium: 0.6684
  • Mar Large: 0.8923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large
4.1002 0.7692 10 4.1741 0.0003 0.001 0.0003 0.0 0.0062 0.0002 0.0 0.0 0.0441 0.0 0.0474 0.0462
1.772 1.5385 20 1.4577 0.0298 0.05 0.0286 0.0 0.0185 0.0656 0.0294 0.1206 0.4882 0.0 0.3421 0.7769
1.5665 2.3077 30 1.3869 0.0339 0.0549 0.0351 0.0 0.0407 0.0516 0.0029 0.0824 0.6059 0.0 0.5158 0.8308
2.0258 3.0769 40 1.2246 0.0561 0.0797 0.0593 0.0 0.0398 0.1166 0.0265 0.1206 0.6441 0.0 0.5789 0.8385
1.5082 3.8462 50 1.1988 0.0477 0.0869 0.0542 0.0 0.0927 0.063 0.0235 0.0853 0.6471 0.0 0.6316 0.7692
1.3716 4.6154 60 1.1917 0.0549 0.1014 0.0602 0.0 0.0902 0.0761 0.0588 0.1618 0.5971 0.0 0.5421 0.7692
1.2398 5.3846 70 1.0554 0.1329 0.1674 0.1485 0.0 0.1462 0.1957 0.0765 0.1882 0.7294 0.0 0.7474 0.8154
1.401 6.1538 80 0.9179 0.1176 0.1821 0.1315 0.0 0.0835 0.2295 0.0529 0.1794 0.7294 0.0 0.7211 0.8538
2.0328 6.9231 90 0.9198 0.1361 0.2109 0.1554 0.0 0.0937 0.2424 0.0559 0.2088 0.6882 0.0 0.6368 0.8692
1.6358 7.6923 100 0.9298 0.2252 0.2898 0.2523 0.0 0.2279 0.3487 0.1059 0.3176 0.6882 0.0 0.6263 0.8846
0.8849 8.4615 110 0.8894 0.1893 0.2435 0.2248 0.0 0.1438 0.3337 0.0971 0.2265 0.7265 0.0 0.7263 0.8385
1.1906 9.2308 120 0.8505 0.2105 0.2704 0.2598 0.0 0.1879 0.3317 0.1324 0.2706 0.6853 0.0 0.6474 0.8462
1.0404 10.0 130 0.7320 0.2508 0.2998 0.29 0.0 0.2031 0.4149 0.1588 0.2971 0.7471 0.0 0.7421 0.8692
1.1534 10.7692 140 0.7996 0.2832 0.374 0.3479 0.0 0.2502 0.411 0.1676 0.3647 0.6647 0.0 0.6263 0.8231
1.1725 11.5385 150 0.7990 0.3115 0.4464 0.3745 0.0 0.2972 0.4147 0.1294 0.3735 0.6588 0.0 0.6158 0.8231
0.891 12.3077 160 0.9007 0.2856 0.3519 0.3449 0.0 0.2607 0.3788 0.1029 0.3529 0.6735 0.0 0.6263 0.8462
1.1 13.0769 170 0.7376 0.2642 0.3608 0.3377 0.0 0.2281 0.4018 0.1176 0.3676 0.7176 0.0 0.7 0.8538
1.2631 13.8462 180 0.7162 0.306 0.4363 0.3899 0.0 0.2997 0.3933 0.1412 0.45 0.7059 0.0 0.7053 0.8154
1.0496 14.6154 190 0.7276 0.2811 0.3866 0.3483 0.0 0.3061 0.3685 0.1471 0.3882 0.7235 0.0 0.7316 0.8231
0.8883 15.3846 200 0.6855 0.3373 0.4578 0.4385 0.0 0.3441 0.4654 0.15 0.4824 0.7412 0.0 0.7579 0.8308
0.8471 16.1538 210 0.6733 0.4351 0.5932 0.5367 0.0 0.3702 0.6215 0.15 0.5412 0.7206 0.0 0.7158 0.8385
0.9084 16.9231 220 0.6526 0.4279 0.5632 0.4848 0.0 0.4011 0.572 0.1824 0.5647 0.7294 0.0 0.7105 0.8692
0.8872 17.6923 230 0.6218 0.4376 0.5753 0.5274 0.0 0.3879 0.6215 0.1559 0.5853 0.7382 0.0 0.7263 0.8692
0.9739 18.4615 240 0.6590 0.4494 0.6293 0.505 0.0 0.3889 0.65 0.1471 0.5853 0.7029 0.0 0.6895 0.8308
0.7596 19.2308 250 0.6367 0.4625 0.6229 0.5322 0.0 0.4106 0.6581 0.1529 0.5853 0.7118 0.0 0.7053 0.8308
0.7124 20.0 260 0.6601 0.4619 0.6411 0.5327 0.0 0.39 0.6852 0.1559 0.5765 0.6794 0.0 0.6421 0.8385
0.8369 20.7692 270 0.6363 0.4736 0.64 0.5738 0.0 0.3993 0.737 0.1559 0.5853 0.6853 0.0 0.6474 0.8462
0.8608 21.5385 280 0.6304 0.496 0.6406 0.5583 0.0 0.4484 0.6973 0.1588 0.5912 0.7 0.0 0.6579 0.8692
0.6174 22.3077 290 0.6825 0.4808 0.6714 0.5569 0.0 0.4264 0.6738 0.1529 0.5765 0.6735 0.0 0.6158 0.8615
0.5903 23.0769 300 0.6037 0.5187 0.6804 0.6126 0.0 0.4604 0.709 0.1824 0.6118 0.7206 0.0 0.6842 0.8846
0.6325 23.8462 310 0.6373 0.529 0.6819 0.6246 0.0 0.4489 0.7601 0.1765 0.5941 0.7088 0.0 0.6579 0.8923
0.8569 24.6154 320 0.6131 0.5382 0.6684 0.6357 0.0 0.4862 0.7382 0.1794 0.6147 0.7294 0.0 0.7 0.8846
0.7056 25.3846 330 0.5700 0.5244 0.6545 0.6089 0.0 0.4891 0.6871 0.1824 0.6176 0.75 0.0 0.7421 0.8769
0.5988 26.1538 340 0.5738 0.5437 0.7119 0.651 0.0 0.5362 0.6823 0.1853 0.6206 0.7529 0.0 0.7579 0.8615
0.5209 26.9231 350 0.6136 0.5153 0.6944 0.6047 0.0 0.4772 0.7054 0.1824 0.5882 0.7059 0.0 0.6789 0.8538
0.6547 27.6923 360 0.6338 0.5166 0.6645 0.6224 0.0 0.4842 0.7072 0.1882 0.5971 0.7088 0.0 0.6842 0.8538
0.6324 28.4615 370 0.6083 0.5143 0.6543 0.6279 0.0 0.4683 0.729 0.1853 0.6 0.7118 0.0 0.6789 0.8692
0.6323 29.2308 380 0.5748 0.529 0.6552 0.637 0.0 0.48 0.7529 0.1853 0.6088 0.7206 0.0 0.6842 0.8846
0.4509 30.0 390 0.5758 0.5311 0.652 0.6325 0.0 0.4923 0.7454 0.1882 0.6206 0.7324 0.0 0.7053 0.8846
0.8259 30.7692 400 0.5836 0.5257 0.6508 0.6241 0.0 0.4752 0.7513 0.1853 0.6 0.7147 0.0 0.6684 0.8923

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MalyO2/working

Finetuned
(16)
this model