|
--- |
|
base_model: BAAI/bge-m3 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:45000 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Seorang pria sedang tidur. |
|
sentences: |
|
- Seorang pria berambut panjang memegang semacam pita. |
|
- Seorang pria tidur di sofa di pinggir jalan. |
|
- Seekor hewan yang mencoba mengeringkan dirinya. |
|
- source_sentence: Ada beberapa orang yang hadir. |
|
sentences: |
|
- Orang tua tidur sendirian di pesawat dengan tas di pangkuannya. |
|
- Seorang wanita dengan rambut pirang disanggul dan mengenakan kacamata hitam berdiri |
|
di dekat tenda hitam dan putih. |
|
- Tiga peselancar angin di lautan, satu di antaranya sedang mengudara. |
|
- source_sentence: Ada dua anjing di luar. |
|
sentences: |
|
- Seorang pria mengenakan kemeja berkancing biru dan celana panjang sedang tidur |
|
di etalase toko. |
|
- Seekor anjing putih berjalan melintasi rerumputan berdaun lebat sementara seekor |
|
anjing coklat hendak menggigitnya. |
|
- Dua anjing krem ​​​​sedang bermain di salju. |
|
- source_sentence: Seorang wanita sedang memainkan gitar di atas panggung dengan latar |
|
belakang hijau. |
|
sentences: |
|
- Warna hijau tidak ada dalam bingkai sama sekali. |
|
- Seorang wanita dan seorang pria memainkan alat musik di trotoar kota. |
|
- Wanita itu sedang memainkan musik. |
|
- source_sentence: Seorang anak laki-laki sedang membaca. |
|
sentences: |
|
- Seorang pria sedang tidur di kursi dan dikelilingi oleh banyak ayam di dalam kandang. |
|
- Seorang anak baru saja memukul bola saat bermain T-ball. |
|
- Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak. |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-m3 |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: model evaluation |
|
type: model-evaluation |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9596 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.0404 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9592 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9596 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9596 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-m3 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("MarcoAland/Indonesian-bge-m3") |
|
# Run inference |
|
sentences = [ |
|
'Seorang anak laki-laki sedang membaca.', |
|
'Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak.', |
|
'Seorang anak baru saja memukul bola saat bermain T-ball.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `model-evaluation` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9596 | |
|
| dot_accuracy | 0.0404 | |
|
| manhattan_accuracy | 0.9592 | |
|
| euclidean_accuracy | 0.9596 | |
|
| **max_accuracy** | **0.9596** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 45,000 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 10.02 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.08 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 52 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Dua pengendara sepeda motor berlomba di lintasan miring.</code> | <code>Lintasan pada gambar tidak sepenuhnya datar.</code> | <code>Pengendara sepeda motor memakai sarung tangannya sebelum balapan</code> | |
|
| <code>Pria itu ada di luar.</code> | <code>Seorang pria berpakaian hitam sedang memegang kantong sampah hitam dan memungut barang-barang dari tempat pembuangan tanah.</code> | <code>Seorang pria mengenakan jas hitam dikelilingi oleh banyak orang di dalam sebuah gedung dengan patung dada orang di dinding.</code> | |
|
| <code>Orang-orang ada di luar ruangan.</code> | <code>Ada orang-orang yang menonton band bermain di luar ruangan dan seorang anak berada di latar depan.</code> | <code>Dua orang bertopi baseball sedang duduk di dalam ruang kantor besar dan menatap layar komputer.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 5,000 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 9.88 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.1 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.69 tokens</li><li>max: 46 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------|:----------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
| <code>Anjing itu sedang berlari.</code> | <code>Seekor anjing coklat mengejar bola di rumput</code> | <code>Anjing itu berbaring telentang di dekat bola hijau.</code> | |
|
| <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur siang di kereta.</code> | <code>Pria muda bekerja di laboratorium sains.</code> | |
|
| <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur di dalam bus.</code> | <code>seorang pria mendayung ganilla menyusuri jalan setapak yang berair</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | model-evaluation_max_accuracy | |
|
|:------:|:----:|:-------------:|:------:|:-----------------------------:| |
|
| 0.0089 | 100 | 0.81 | 0.5528 | - | |
|
| 0.0178 | 200 | 0.5397 | 0.4948 | - | |
|
| 0.0267 | 300 | 0.5349 | 0.5147 | - | |
|
| 0.0356 | 400 | 0.5342 | 0.5475 | - | |
|
| 0.0444 | 500 | 0.4433 | 0.5679 | 0.9596 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |