Indonesian-bge-m3 / README.md
MarcoAland's picture
Add new SentenceTransformer model.
0c1c64a verified
---
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:45000
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Seorang pria sedang tidur.
sentences:
- Seorang pria berambut panjang memegang semacam pita.
- Seorang pria tidur di sofa di pinggir jalan.
- Seekor hewan yang mencoba mengeringkan dirinya.
- source_sentence: Ada beberapa orang yang hadir.
sentences:
- Orang tua tidur sendirian di pesawat dengan tas di pangkuannya.
- Seorang wanita dengan rambut pirang disanggul dan mengenakan kacamata hitam berdiri
di dekat tenda hitam dan putih.
- Tiga peselancar angin di lautan, satu di antaranya sedang mengudara.
- source_sentence: Ada dua anjing di luar.
sentences:
- Seorang pria mengenakan kemeja berkancing biru dan celana panjang sedang tidur
di etalase toko.
- Seekor anjing putih berjalan melintasi rerumputan berdaun lebat sementara seekor
anjing coklat hendak menggigitnya.
- Dua anjing krem ​​​​sedang bermain di salju.
- source_sentence: Seorang wanita sedang memainkan gitar di atas panggung dengan latar
belakang hijau.
sentences:
- Warna hijau tidak ada dalam bingkai sama sekali.
- Seorang wanita dan seorang pria memainkan alat musik di trotoar kota.
- Wanita itu sedang memainkan musik.
- source_sentence: Seorang anak laki-laki sedang membaca.
sentences:
- Seorang pria sedang tidur di kursi dan dikelilingi oleh banyak ayam di dalam kandang.
- Seorang anak baru saja memukul bola saat bermain T-ball.
- Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak.
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: triplet
name: Triplet
dataset:
name: model evaluation
type: model-evaluation
metrics:
- type: cosine_accuracy
value: 0.9596
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0404
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9592
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9596
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9596
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MarcoAland/Indonesian-bge-m3")
# Run inference
sentences = [
'Seorang anak laki-laki sedang membaca.',
'Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak.',
'Seorang anak baru saja memukul bola saat bermain T-ball.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `model-evaluation`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9596 |
| dot_accuracy | 0.0404 |
| manhattan_accuracy | 0.9592 |
| euclidean_accuracy | 0.9596 |
| **max_accuracy** | **0.9596** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 45,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 10.02 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.08 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dua pengendara sepeda motor berlomba di lintasan miring.</code> | <code>Lintasan pada gambar tidak sepenuhnya datar.</code> | <code>Pengendara sepeda motor memakai sarung tangannya sebelum balapan</code> |
| <code>Pria itu ada di luar.</code> | <code>Seorang pria berpakaian hitam sedang memegang kantong sampah hitam dan memungut barang-barang dari tempat pembuangan tanah.</code> | <code>Seorang pria mengenakan jas hitam dikelilingi oleh banyak orang di dalam sebuah gedung dengan patung dada orang di dinding.</code> |
| <code>Orang-orang ada di luar ruangan.</code> | <code>Ada orang-orang yang menonton band bermain di luar ruangan dan seorang anak berada di latar depan.</code> | <code>Dua orang bertopi baseball sedang duduk di dalam ruang kantor besar dan menatap layar komputer.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.88 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.1 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.69 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------|:----------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>Anjing itu sedang berlari.</code> | <code>Seekor anjing coklat mengejar bola di rumput</code> | <code>Anjing itu berbaring telentang di dekat bola hijau.</code> |
| <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur siang di kereta.</code> | <code>Pria muda bekerja di laboratorium sains.</code> |
| <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur di dalam bus.</code> | <code>seorang pria mendayung ganilla menyusuri jalan setapak yang berair</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | model-evaluation_max_accuracy |
|:------:|:----:|:-------------:|:------:|:-----------------------------:|
| 0.0089 | 100 | 0.81 | 0.5528 | - |
| 0.0178 | 200 | 0.5397 | 0.4948 | - |
| 0.0267 | 300 | 0.5349 | 0.5147 | - |
| 0.0356 | 400 | 0.5342 | 0.5475 | - |
| 0.0444 | 500 | 0.4433 | 0.5679 | 0.9596 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->