File size: 2,686 Bytes
c4109a3
 
 
 
 
 
 
 
 
 
6b0a16e
 
 
c4109a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac3fed5
6b0a16e
 
ac3fed5
6b0a16e
 
ac3fed5
6b0a16e
 
ac3fed5
c4109a3
 
 
 
 
 
 
 
 
ac3fed5
 
 
 
 
c4109a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b0a16e
c4109a3
 
 
 
ac3fed5
d325fd7
c4109a3
 
 
6b0a16e
 
ac3fed5
 
 
 
 
c4109a3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---

library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilhubert-finetuned-cry-detector
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9691629955947136
    - name: F1
      type: f1
      value: 0.9692159230090303
    - name: Precision
      type: precision
      value: 0.969310997758714
    - name: Recall
      type: recall
      value: 0.9691629955947136
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-cry-detector

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0944
- Accuracy: 0.9692
- F1: 0.9692
- Precision: 0.9693
- Recall: 0.9692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 8

- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.001

- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 0.9825 | 14   | 0.1775          | 0.9427   | 0.9434 | 0.9459    | 0.9427 |
| No log        | 1.9649 | 28   | 0.1464          | 0.9515   | 0.9519 | 0.9533    | 0.9515 |
| No log        | 2.9474 | 42   | 0.1139          | 0.9559   | 0.9556 | 0.9560    | 0.9559 |
| No log        | 4.0    | 57   | 0.1042          | 0.9648   | 0.9649 | 0.9652    | 0.9648 |
| No log        | 4.9123 | 70   | 0.0944          | 0.9692   | 0.9692 | 0.9693    | 0.9692 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1