Marcos12886's picture
End of training
ac3fed5 verified
|
raw
history blame
2.69 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-cry-detector
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9691629955947136
          - name: F1
            type: f1
            value: 0.9692159230090303
          - name: Precision
            type: precision
            value: 0.969310997758714
          - name: Recall
            type: recall
            value: 0.9691629955947136

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0944
  • Accuracy: 0.9692
  • F1: 0.9692
  • Precision: 0.9693
  • Recall: 0.9692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.9825 14 0.1775 0.9427 0.9434 0.9459 0.9427
No log 1.9649 28 0.1464 0.9515 0.9519 0.9533 0.9515
No log 2.9474 42 0.1139 0.9559 0.9556 0.9560 0.9559
No log 4.0 57 0.1042 0.9648 0.9649 0.9652 0.9648
No log 4.9123 70 0.0944 0.9692 0.9692 0.9693 0.9692

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1