Marcos12886's picture
End of training
72e7bdc verified
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-cry-detector
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9830508474576272

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0703
  • Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 11 0.1909 0.9435
No log 2.0 22 0.1998 0.9322
No log 3.0 33 0.0904 0.9718
No log 4.0 44 0.1063 0.9661
No log 5.0 55 0.0770 0.9774
No log 6.0 66 0.0832 0.9774
No log 7.0 77 0.0658 0.9774
No log 8.0 88 0.0681 0.9831
No log 9.0 99 0.0701 0.9831
No log 10.0 110 0.0703 0.9831

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1