Marcos12886's picture
End of training
ab939e0 verified
|
raw
history blame
2.44 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-cry-detector
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8876404494382022

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4928
  • Accuracy: 0.8876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9888 11 1.3978 0.5899
No log 1.9775 22 1.0485 0.7022
No log 2.9663 33 0.8464 0.8258
No log 3.9551 44 0.6916 0.8596
No log 4.9438 55 0.6074 0.8596
No log 5.9326 66 0.5557 0.8708
No log 6.9213 77 0.5206 0.8764
No log 8.0 89 0.4942 0.8876
No log 8.9888 100 0.4945 0.8876
No log 9.8876 110 0.4928 0.8876

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1