Marcos12886's picture
End of training
f656268 verified
|
raw
history blame
2.35 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-cry-detector
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: None
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9926739926739927

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0459
  • Accuracy: 0.9927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9956 85 0.0692 0.9773
No log 1.9912 170 0.0466 0.9861
No log 2.9985 256 0.0489 0.9853
No log 3.9941 341 0.0423 0.9897
No log 4.9898 426 0.0443 0.9919
0.055 5.9971 512 0.0434 0.9927
0.055 6.9927 597 0.0440 0.9927
0.055 8.0 683 0.0460 0.9927
0.055 8.9956 768 0.0459 0.9927

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1