|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: distilhubert-finetuned-cry-detector |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-cry-detector |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2255 |
|
- Accuracy: 0.9883 |
|
- F1: 0.9883 |
|
- Precision: 0.9883 |
|
- Recall: 0.9883 |
|
- Confusion Matrix: [[960, 10], [6, 389]] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 123 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Confusion Matrix | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----------------------:| |
|
| 0.3124 | 2.3256 | 100 | 0.2739 | 0.9641 | 0.9640 | 0.9640 | 0.9641 | [[948, 22], [27, 368]] | |
|
| 0.2337 | 4.6512 | 200 | 0.2385 | 0.9736 | 0.9737 | 0.9737 | 0.9736 | [[950, 20], [16, 379]] | |
|
| 0.2064 | 6.9767 | 300 | 0.2295 | 0.9832 | 0.9832 | 0.9832 | 0.9832 | [[958, 12], [11, 384]] | |
|
| 0.2023 | 9.3023 | 400 | 0.2277 | 0.9868 | 0.9869 | 0.9870 | 0.9868 | [[957, 13], [5, 390]] | |
|
| 0.2003 | 11.6279 | 500 | 0.2254 | 0.9875 | 0.9876 | 0.9876 | 0.9875 | [[960, 10], [7, 388]] | |
|
| 0.2002 | 13.9535 | 600 | 0.2259 | 0.9875 | 0.9876 | 0.9876 | 0.9875 | [[959, 11], [6, 389]] | |
|
| 0.1994 | 16.2791 | 700 | 0.2255 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | [[960, 10], [6, 389]] | |
|
| 0.1997 | 18.6047 | 800 | 0.2254 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | [[960, 10], [6, 389]] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Tokenizers 0.19.1 |
|
|