Marcos12886's picture
End of training
00dc395 verified
|
raw
history blame
2.4 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-donateacry
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8369565217391305
          - name: F1
            type: f1
            value: 0.7626704399279649
          - name: Precision
            type: precision
            value: 0.7004962192816635
          - name: Recall
            type: recall
            value: 0.8369565217391305

distilhubert-finetuned-donateacry

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6717
  • Accuracy: 0.8370
  • F1: 0.7627
  • Precision: 0.7005
  • Recall: 0.8370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.8696 5 1.1779 0.7391 0.7324 0.7336 0.7391
No log 1.9130 11 0.6791 0.8370 0.7627 0.7005 0.8370
No log 2.6087 15 0.6717 0.8370 0.7627 0.7005 0.8370

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1