|
---
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- audiofolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: distilhubert-finetuned-donateacry
|
|
results:
|
|
- task:
|
|
name: Audio Classification
|
|
type: audio-classification
|
|
dataset:
|
|
name: audiofolder
|
|
type: audiofolder
|
|
config: default
|
|
split: train
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8932584269662921
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-donateacry
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.5034
|
|
- Accuracy: 0.8933
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 123
|
|
- gradient_accumulation_steps: 8
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 25
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
|
| No log | 0.9888 | 11 | 0.9525 | 0.7303 |
|
|
| No log | 1.9775 | 22 | 1.2765 | 0.5393 |
|
|
| No log | 2.9663 | 33 | 0.6634 | 0.7978 |
|
|
| No log | 3.9551 | 44 | 0.6369 | 0.8202 |
|
|
| No log | 4.9438 | 55 | 0.5328 | 0.8596 |
|
|
| No log | 5.9326 | 66 | 0.5146 | 0.8652 |
|
|
| No log | 6.9213 | 77 | 0.5200 | 0.8764 |
|
|
| No log | 8.0 | 89 | 0.5213 | 0.8708 |
|
|
| No log | 8.9888 | 100 | 0.6062 | 0.8596 |
|
|
| No log | 9.9775 | 111 | 0.5938 | 0.8652 |
|
|
| No log | 10.9663 | 122 | 0.5247 | 0.8652 |
|
|
| No log | 11.9551 | 133 | 0.7004 | 0.8483 |
|
|
| No log | 12.9438 | 144 | 0.5388 | 0.8876 |
|
|
| No log | 13.9326 | 155 | 0.4856 | 0.8876 |
|
|
| No log | 14.9213 | 166 | 0.5380 | 0.8764 |
|
|
| No log | 16.0 | 178 | 0.5055 | 0.8876 |
|
|
| No log | 16.9888 | 189 | 0.5217 | 0.8876 |
|
|
| No log | 17.9775 | 200 | 0.5034 | 0.8933 |
|
|
| No log | 18.9663 | 211 | 0.4745 | 0.8876 |
|
|
| No log | 19.9551 | 222 | 0.4812 | 0.8876 |
|
|
| No log | 20.9438 | 233 | 0.4709 | 0.8820 |
|
|
| No log | 21.9326 | 244 | 0.4824 | 0.8876 |
|
|
| No log | 22.9213 | 255 | 0.4819 | 0.8876 |
|
|
| No log | 24.0 | 267 | 0.4877 | 0.8933 |
|
|
| No log | 24.7191 | 275 | 0.4866 | 0.8933 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.42.3
|
|
- Pytorch 2.3.1+cu118
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|