metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-minds-v5-numproc1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[451:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.37507453786523554
whisper-tiny-minds-v5-numproc1
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6530
- Wer Ortho: 0.4102
- Wer: 0.3751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.4354 | 3.57 | 100 | 0.5542 | 0.4539 | 0.3870 |
0.066 | 7.14 | 200 | 0.5501 | 0.4059 | 0.3554 |
0.0086 | 10.71 | 300 | 0.6204 | 0.3953 | 0.3542 |
0.0028 | 14.29 | 400 | 0.6455 | 0.3990 | 0.3631 |
0.0022 | 17.86 | 500 | 0.6530 | 0.4102 | 0.3751 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3