|
--- |
|
tags: |
|
- clip |
|
- transformers |
|
- e-commerce |
|
- fashion |
|
- multimodal retrieval |
|
- siglip |
|
- transformers.js |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
license: apache-2.0 |
|
language: |
|
- en |
|
metrics: |
|
- precision |
|
- recall |
|
- MRR |
|
--- |
|
# Marqo-FashionSigLIP Model Card |
|
|
|
[![GitHub](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/marqo-ai/marqo-FashionCLIP) |
|
|
|
Marqo-FashionSigLIP is a multimodal embedding model that provides up to [57% improvement in MRR and recall](https://www.marqo.ai/blog/search-model-for-fashion) over [fashion clip](https://huggingface.co/patrickjohncyh/fashion-clip). |
|
|
|
Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. |
|
The model was fine-tuned from ViT-B-16-SigLIP (webli). |
|
|
|
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP) |
|
|
|
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion) |
|
|
|
|
|
## Usage |
|
|
|
### Hugging Face |
|
|
|
The model can be loaded with AutoModel by |
|
|
|
```python |
|
from transformers import AutoModel, AutoProcessor |
|
model = AutoModel.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True) |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
image = [Image.open("docs/fashion-hippo.png")] |
|
text = ["a hat", "a t-shirt", "shoes"] |
|
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
image_features = model.get_image_features(processed['pixel_values'], normalize=True) |
|
text_features = model.get_text_features(processed['input_ids'], normalize=True) |
|
|
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
|
|
print("Label probs:", text_probs) |
|
# [0.98379946, 0.01294010, 0.00326044] |
|
``` |
|
|
|
### OpenCLIP |
|
|
|
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by |
|
|
|
```python |
|
import open_clip |
|
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') |
|
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0) |
|
text = tokenizer(["a hat", "a t-shirt", "shoes"]) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image, normalize=True) |
|
text_features = model.encode_text(text, normalize=True) |
|
|
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
|
|
print("Label probs:", text_probs) |
|
# [0.9860219105287394, 0.00777916527489097, 0.006198924196369721] |
|
``` |
|
|
|
### Transformers.js |
|
|
|
You can also run the model in JavaScript with the [Transformers.js](https://huggingface.co/docs/transformers.js) library. |
|
|
|
First, install it from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
|
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
Then, compute embeddings as follows: |
|
```js |
|
import { SiglipTextModel, SiglipVisionModel, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers'; |
|
|
|
const model_id = 'Marqo/marqo-fashionSigLIP'; |
|
|
|
// Load tokenizer and text model |
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id); |
|
const text_model = await SiglipTextModel.from_pretrained(model_id); |
|
|
|
// Load processor and vision model |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
const vision_model = await SiglipVisionModel.from_pretrained(model_id); |
|
|
|
// Run tokenization |
|
const texts = ['a hat', 'a t-shirt', 'shoes']; |
|
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true }); |
|
|
|
// Compute text embeddings |
|
const { text_embeds } = await text_model(text_inputs); |
|
|
|
// Read image and run processor |
|
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png'); |
|
const image_inputs = await processor(image); |
|
|
|
// Compute vision embeddings |
|
const { image_embeds } = await vision_model(image_inputs); |
|
|
|
// Compute similarity scores |
|
const normalized_text_embeds = text_embeds.normalize().tolist(); |
|
const normalized_image_embeds = image_embeds.normalize().tolist()[0]; |
|
|
|
const text_probs = softmax(normalized_text_embeds.map((text_embed) => |
|
100.0 * dot(normalized_image_embeds, text_embed) |
|
)); |
|
console.log(text_probs); |
|
// [0.9860219105287394, 0.00777916527489097, 0.006198924196369721] |
|
``` |
|
|
|
## Benchmark Results |
|
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below: |
|
|
|
**Text-To-Image (Averaged across 6 datasets)** |
|
| Model | AvgRecall | Recall@1 | Recall@10 | MRR | |
|
|----------------------------|-------------|------------|-------------|-----------| |
|
| Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** | |
|
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 | |
|
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 | |
|
| ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 | |
|
|
|
**Category-To-Product (Averaged across 5 datasets)** |
|
| Model | AvgP | P@1 | P@10 | MRR | |
|
|----------------------------|-----------|-----------|-----------|-----------| |
|
| Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** | |
|
| FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 | |
|
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 | |
|
| ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 | |
|
|
|
**Sub-Category-To-Product (Averaged across 4 datasets)** |
|
| Model | AvgP | P@1 | P@10 | MRR | |
|
|----------------------------|-----------|-----------|-----------|-----------| |
|
| Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** | |
|
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 | |
|
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 | |
|
| ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 | |