|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
### Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking |
|
|
|
This work aims to improve and measure the ranking performance of information retrieval models, especially for retrieving relevant products given a search query. |
|
|
|
Blog post: https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking |
|
|
|
Paper: https://arxiv.org/pdf/2404.08535.pdf |
|
|
|
### Text-only |
|
| Methods | Models | nDCG | ERR | RBP | |
|
|---------------|----------------------------|-----------|------------|-----------| |
|
| BM25 | - | 0.071 | 0.028 | 0.052 | |
|
| E5 | e5-large-v2 | 0.335 | 0.095 | 0.289 | |
|
| E5 (GCL) | e5-large-v2 | **0.470** | **0.457** | **0.374** | |
|
|
|
### Usage |
|
|
|
```python |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
|
|
# Each input text should start with "query: " or "passage: ". |
|
# For tasks other than retrieval, you can simply use the "query: " prefix. |
|
input_texts = ['query: Espresso Pitcher with Handle', |
|
'query: Women’s designer handbag sale', |
|
"passage: Dianoo Espresso Steaming Pitcher, Espresso Milk Frothing Pitcher Stainless Steel", |
|
"passage: Coach Outlet Eliza Shoulder Bag - Black - One Size"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Marqo/marqo-gcl-e5-large-v2-130') |
|
model_new = AutoModel.from_pretrained('Marqo/marqo-gcl-e5-large-v2-130') |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=77, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = model_new(**batch_dict) |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
``` |