Martha-987's picture
update model card README.md
96dcc3b
---
language:
- ar
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Martha-987/MyOwnData
metrics:
- wer
model-index:
- name: Whisper Small Ar- Martha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: MyOwnData
type: Martha-987/MyOwnData
config: default
split: test[:5%]
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 58.60917941585535
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Ar- Martha
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the MyOwnData dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6680
- Wer: 58.6092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0208 | 9.71 | 1000 | 0.6680 | 58.6092 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2