MateiCv's picture
End of training
4e1d7aa
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: spa-eng-pos-tagging-v2.1
    results: []

spa-eng-pos-tagging-v2.1

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1523
  • Accuracy: 0.9516
  • Precision: 0.9445
  • Recall: 0.8846
  • F1: 0.8831
  • Hamming Loss: 0.0484

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming Loss
0.3806 1.0 1744 0.2730 0.8940 0.8903 0.8246 0.8252 0.1060
0.2615 2.0 3488 0.2134 0.9181 0.9058 0.8514 0.8464 0.0819
0.1864 3.0 5232 0.1895 0.9284 0.9224 0.8626 0.8608 0.0716
0.1721 4.0 6976 0.1769 0.9352 0.9287 0.8676 0.8667 0.0648
0.1462 5.0 8720 0.1840 0.9355 0.9310 0.8663 0.8670 0.0645
0.1175 6.0 10464 0.1553 0.9487 0.9399 0.8820 0.8794 0.0513
0.0949 7.0 12208 0.1523 0.9516 0.9445 0.8846 0.8831 0.0484
0.0833 8.0 13952 0.1564 0.9535 0.9439 0.8881 0.8847 0.0465
0.0722 9.0 15696 0.1566 0.9549 0.9472 0.8890 0.8867 0.0451
0.0571 10.0 17440 0.1649 0.9565 0.9513 0.8875 0.8880 0.0435
0.0516 11.0 19184 0.1669 0.9587 0.9523 0.8913 0.8905 0.0413
0.0392 12.0 20928 0.1711 0.9598 0.9524 0.8925 0.8911 0.0402
0.03 13.0 22672 0.1800 0.9603 0.9533 0.8935 0.8921 0.0397
0.0308 14.0 24416 0.1827 0.9607 0.9537 0.8938 0.8924 0.0393

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3