File size: 10,364 Bytes
d129b8e
 
 
 
 
 
 
 
 
 
bccf302
 
 
 
 
d129b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Follow https://blog.ovhcloud.com/fine-tuning-llama-2-models-using-a-single-gpu-qlora-and-ai-notebooks/

# Connect to a compute node interactively
# srun --partition=gpu-interactive --gpus=a5000:1 --mem=16000 --pty /bin/bash
# source env/hugh/bin/activate
# cd /share/compling/speech/llama_tuning

# On first exectution
# Downloading and preparing dataset json/databricks--databricks-dolly-15k ...

# Upload this file to Notes
# huggingface-cli upload MatsRooth/Notes tune.py
#  or
# see how to use See https://huggingface.co/docs/huggingface_hub/hf_transfer

import argparse
import bitsandbytes as bnb
from datasets import load_dataset
from functools import partial
import os
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, AutoPeftModelForCausalLM
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed, Trainer, TrainingArguments, BitsAndBytesConfig, \
    DataCollatorForLanguageModeling, Trainer, TrainingArguments
from datasets import load_dataset

def load_model(model_name, bnb_config):
    n_gpus = torch.cuda.device_count()
    max_memory = f'{40960}MB'

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        quantization_config=bnb_config,
        device_map="auto", # dispatch efficiently the model on the available ressources
        max_memory = {i: max_memory for i in range(n_gpus)},
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)

    # Needed for LLaMA tokenizer
    tokenizer.pad_token = tokenizer.eos_token

    return model, tokenizer

# Load the databricks dataset from Hugging Face
from datasets import load_dataset

dataset = load_dataset("databricks/databricks-dolly-15k", split="train")

print(f'Number of prompts: {len(dataset)}')
print(f'Column names are: {dataset.column_names}')

# Output 
# Number of prompts: 15011
# Column names are: ['instruction', 'context', 'response', 'category']

## Pre-processing the dataset
def create_prompt_formats(sample):
    """
    Format various fields of the sample ('instruction', 'context', 'response')
    Then concatenate them using two newline characters 
    :param sample: Sample dictionnary
    """

    INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
    INSTRUCTION_KEY = "### Instruction:"
    INPUT_KEY = "Input:"
    RESPONSE_KEY = "### Response:"
    END_KEY = "### End"
    
    blurb = f"{INTRO_BLURB}"
    instruction = f"{INSTRUCTION_KEY}\n{sample['instruction']}"
    input_context = f"{INPUT_KEY}\n{sample['context']}" if sample["context"] else None
    response = f"{RESPONSE_KEY}\n{sample['response']}"
    end = f"{END_KEY}"
    
    parts = [part for part in [blurb, instruction, input_context, response, end] if part]

    formatted_prompt = "\n\n".join(parts)
    
    sample["text"] = formatted_prompt

    return sample


# SOURCE https://github.com/databrickslabs/dolly/blob/master/training/trainer.py
def get_max_length(model):
    conf = model.config
    max_length = None
    for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:
        max_length = getattr(model.config, length_setting, None)
        if max_length:
            print(f"Found max lenth: {max_length}")
            break
    if not max_length:
        max_length = 1024
        print(f"Using default max length: {max_length}")
    return max_length


def preprocess_batch(batch, tokenizer, max_length):
    """
    Tokenizing a batch
    """
    return tokenizer(
        batch["text"],
        max_length=max_length,
        truncation=True,
    )


# SOURCE https://github.com/databrickslabs/dolly/blob/master/training/trainer.py
def preprocess_dataset(tokenizer: AutoTokenizer, max_length: int, seed, dataset: str):
    """Format & tokenize it so it is ready for training
    :param tokenizer (AutoTokenizer): Model Tokenizer
    :param max_length (int): Maximum number of tokens to emit from tokenizer
    """
    
    # Add prompt to each sample
    print("Preprocessing dataset...")
    dataset = dataset.map(create_prompt_formats)#, batched=True)
    
    # Apply preprocessing to each batch of the dataset & and remove 'instruction', 'context', 'response', 'category' fields
    _preprocessing_function = partial(preprocess_batch, max_length=max_length, tokenizer=tokenizer)
    dataset = dataset.map(
        _preprocessing_function,
        batched=True,
        remove_columns=["instruction", "context", "response", "text", "category"],
    )

    # Filter out samples that have input_ids exceeding max_length
    dataset = dataset.filter(lambda sample: len(sample["input_ids"]) < max_length)
    
    # Shuffle dataset
    dataset = dataset.shuffle(seed=seed)

    return dataset

## Create a bitsandbytes configuration
def create_bnb_config():
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
    )

    return bnb_config

def create_peft_config(modules):
    """
    Create Parameter-Efficient Fine-Tuning config for your model
    :param modules: Names of the modules to apply Lora to
    """
    config = LoraConfig(
        r=16,  # dimension of the updated matrices
        lora_alpha=64,  # parameter for scaling
        target_modules=modules,
        lora_dropout=0.1,  # dropout probability for layers
        bias="none",
        task_type="CAUSAL_LM",
    )

    return config

# SOURCE https://github.com/artidoro/qlora/blob/main/qlora.py

def find_all_linear_names(model):
    cls = bnb.nn.Linear4bit #if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)

def print_trainable_parameters(model, use_4bit=False):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        num_params = param.numel()
        # if using DS Zero 3 and the weights are initialized empty
        if num_params == 0 and hasattr(param, "ds_numel"):
            num_params = param.ds_numel

        all_param += num_params
        if param.requires_grad:
            trainable_params += num_params
    if use_4bit:
        trainable_params /= 2
    print(
        f"all params: {all_param:,d} || trainable params: {trainable_params:,d} || trainable%: {100 * trainable_params / all_param}"
    )

# Load model from HF with user's token and with bitsandbytes config

model_name = "meta-llama/Llama-2-7b-hf" 

bnb_config = create_bnb_config()

model, tokenizer = load_model(model_name, bnb_config)

print(model)

## Preprocess dataset

max_length = get_max_length(model)

print(max_length)

# The seed seems to be missing in https://blog.ovhcloud.com/fine-tuning-llama-2-models-using-a-single-gpu-qlora-and-ai-notebooks/
# It is supposed to be an int, make one up.
seed = 98345

dataset = preprocess_dataset(tokenizer, max_length, seed, dataset)


def train(model, tokenizer, dataset, output_dir):
    # Apply preprocessing to the model to prepare it by
    # 1 - Enabling gradient checkpointing to reduce memory usage during fine-tuning
    model.gradient_checkpointing_enable()

    # 2 - Using the prepare_model_for_kbit_training method from PEFT
    model = prepare_model_for_kbit_training(model)

    # Get lora module names
    modules = find_all_linear_names(model)

    # Create PEFT config for these modules and wrap the model to PEFT
    peft_config = create_peft_config(modules)
    model = get_peft_model(model, peft_config)
    
    # Print information about the percentage of trainable parameters
    print_trainable_parameters(model)
    
    # Training parameters
    trainer = Trainer(
        model=model,
        train_dataset=dataset,
        args=TrainingArguments(
            per_device_train_batch_size=1,
            gradient_accumulation_steps=4,
            warmup_steps=2,
            max_steps=20,
            learning_rate=2e-4,
            fp16=True,
            logging_steps=1,
            output_dir="outputs",
            optim="paged_adamw_8bit",
        ),
        data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
    )
    
    model.config.use_cache = False  # re-enable for inference to speed up predictions for similar inputs
    
    ### SOURCE https://github.com/artidoro/qlora/blob/main/qlora.py
    # Verifying the datatypes before training
    
    dtypes = {}
    for _, p in model.named_parameters():
        dtype = p.dtype
        if dtype not in dtypes: dtypes[dtype] = 0
        dtypes[dtype] += p.numel()
    total = 0
    for k, v in dtypes.items(): total+= v
    for k, v in dtypes.items():
        print(k, v, v/total)
     
    do_train = True
    
    # Launch training
    print("Training...")
    
    if do_train:
        train_result = trainer.train()
        metrics = train_result.metrics
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
        print(metrics)    
    
    ###
    
    # Saving model
    print("Saving last checkpoint of the model...")
    os.makedirs(output_dir, exist_ok=True)
    trainer.model.save_pretrained(output_dir)
    
    # Free memory for merging weights
    del model
    del trainer
    torch.cuda.empty_cache()

output_dir = "results/llama2/final_checkpoint"

# Run train!
print("Run train ...")
train(model, tokenizer, dataset, output_dir)


# Merge weights and save the merged checkpoint
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", torch_dtype=torch.bfloat16)
model = model.merge_and_unload()

output_merged_dir = "results/llama2/final_merged_checkpoint"
os.makedirs(output_merged_dir, exist_ok=True)
model.save_pretrained(output_merged_dir, safe_serialization=True)

# save tokenizer for easy inference
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained(output_merged_dir)