MatthiasZ's picture
End of training
acec38c verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - MatthiasZ/whisper_large_v3_turbo_annota_2
metrics:
  - wer
model-index:
  - name: whisper_large_v3_turbo_annota_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: whisper_large_v3_turbo_annota_2
          type: MatthiasZ/whisper_large_v3_turbo_annota_2
          args: 'config: de, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 21.886674395921897

whisper_large_v3_turbo_annota_2

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the whisper_large_v3_turbo_annota_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3910
  • Wer: 21.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4409 0.3333 2000 0.4489 23.5761
0.4317 0.6667 4000 0.4141 22.9669
0.3881 1.0 6000 0.3910 21.8867

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3