|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
- alpaca |
|
- mixtral |
|
- nous_hermes |
|
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT |
|
model-index: |
|
- name: Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca |
|
results: [] |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT |
|
model_type: MixtralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
trust_remote_code: true |
|
|
|
hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca |
|
hf_use_auth_token: true |
|
|
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: tatsu-lab/alpaca |
|
type: alpaca |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./qlora-out |
|
|
|
# save_safetensors: true |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 1024 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
# - gate |
|
- q_proj |
|
# - k_proj |
|
- v_proj |
|
# - o_proj |
|
# - w1 |
|
# - w2 |
|
# - w3 |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca |
|
|
|
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0276 |
|
|
|
## How to use |
|
|
|
**PEFT** |
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM |
|
|
|
config = PeftConfig.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") |
|
model = AutoModelForCausalLM.from_pretrained("NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT") |
|
model = PeftModel.from_pretrained(model, "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") |
|
``` |
|
|
|
**Transformers** |
|
```python |
|
# Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") |
|
|
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") |
|
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") |
|
``` |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.3912 | 0.01 | 1 | 1.3714 | |
|
| 1.0321 | 0.25 | 45 | 1.0427 | |
|
| 1.0312 | 0.51 | 90 | 1.0327 | |
|
| 0.9917 | 0.76 | 135 | 1.0276 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.0 |