Text Generation
Transformers
Safetensors
mistral
Safetensors
text-generation-inference
Merge
7b
mistralai/Mistral-7B-Instruct-v0.1
jondurbin/bagel-dpo-7b-v0.1
dataset:ai2_arc
dataset:unalignment/spicy-3.1
dataset:codeparrot/apps
dataset:facebook/belebele
dataset:boolq
dataset:jondurbin/cinematika-v0.1
dataset:drop
dataset:lmsys/lmsys-chat-1m
dataset:TIGER-Lab/MathInstruct
dataset:cais/mmlu
dataset:Muennighoff/natural-instructions
dataset:openbookqa
dataset:piqa
dataset:Vezora/Tested-22k-Python-Alpaca
dataset:cakiki/rosetta-code
dataset:Open-Orca/SlimOrca
dataset:spider
dataset:squad_v2
dataset:migtissera/Synthia-v1.3
dataset:datasets/winogrande
dataset:nvidia/HelpSteer
dataset:Intel/orca_dpo_pairs
dataset:unalignment/toxic-dpo-v0.1
dataset:jondurbin/truthy-dpo-v0.1
dataset:allenai/ultrafeedback_binarized_cleaned
Inference Endpoints
conversational
metadata
license: apache-2.0
tags:
- Safetensors
- mistral
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.1
- jondurbin/bagel-dpo-7b-v0.1
- transformers
- safetensors
- mistral
- text-generation
- dataset:ai2_arc
- dataset:unalignment/spicy-3.1
- dataset:codeparrot/apps
- dataset:facebook/belebele
- dataset:boolq
- dataset:jondurbin/cinematika-v0.1
- dataset:drop
- dataset:lmsys/lmsys-chat-1m
- dataset:TIGER-Lab/MathInstruct
- dataset:cais/mmlu
- dataset:Muennighoff/natural-instructions
- dataset:openbookqa
- dataset:piqa
- dataset:Vezora/Tested-22k-Python-Alpaca
- dataset:cakiki/rosetta-code
- dataset:Open-Orca/SlimOrca
- dataset:spider
- dataset:squad_v2
- dataset:migtissera/Synthia-v1.3
- dataset:datasets/winogrande
- dataset:nvidia/HelpSteer
- dataset:Intel/orca_dpo_pairs
- dataset:unalignment/toxic-dpo-v0.1
- dataset:jondurbin/truthy-dpo-v0.1
- dataset:allenai/ultrafeedback_binarized_cleaned
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.1
bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.1 is a merge of the following models:
🧩 Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.1
layer_range: [0, 32]
- model: jondurbin/bagel-dpo-7b-v0.1
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])