calme-2.2-qwen2-72b / README.md
MaziyarPanahi's picture
fixing base model - adding a missing 2 (#15)
fe3e03d verified
metadata
language:
  - en
license: other
library_name: transformers
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
tags:
  - chat
  - qwen
  - qwen2
  - finetune
  - chatml
base_model: Qwen/Qwen2-72B
datasets:
  - MaziyarPanahi/truthy-dpo-v0.1-axolotl
model_name: calme-2.2-qwen2-72b
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
  - name: calme-2.2-qwen2-72b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.08
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 56.8
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 41.16
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.55
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 49.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.2-qwen2-72b
          name: Open LLM Leaderboard
Calme-2 Models

MaziyarPanahi/calme-2.2-qwen2-72b

This model is a fine-tuned version of the powerful Qwen/Qwen2-72B-Instruct, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.

The post-training process is identical to the calme-2.1-qwen2-72b model; however, some parameters are different, and it was trained for a longer period.

Use Cases

This model is suitable for a wide range of applications, including but not limited to:

  • Advanced question-answering systems
  • Intelligent chatbots and virtual assistants
  • Content generation and summarization
  • Code generation and analysis
  • Complex problem-solving and decision support

⚡ Quantized GGUF

All GGUF models are available here: MaziyarPanahi/calme-2.2-qwen2-72b-GGUF

🏆 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 43.40
IFEval (0-Shot) 80.08
BBH (3-Shot) 56.80
MATH Lvl 5 (4-Shot) 41.16
GPQA (0-shot) 16.55
MuSR (0-shot) 16.52
MMLU-PRO (5-shot) 49.27

TruthfulQA:

|    Tasks     |Version|Filter|n-shot|Metric|Value |   |Stderr|
|--------------|------:|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|      2|none  |     0|acc   |0.6856|±  |0.0148|

WinoGrande:

|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|------:|------|-----:|------|-----:|---|-----:|
|winogrande|      1|none  |     5|acc   |0.8343|±  |0.0105|

ARC (Challenge) :

|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|------:|------|-----:|--------|-----:|---|-----:|
|arc_challenge|      1|none  |    25|acc     |0.6928|±  |0.0135|
|             |       |none  |    25|acc_norm|0.7227|±  |0.0131|

GSM8K:

|Tasks|Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|-----|------:|----------------|-----:|-----------|-----:|---|-----:|
|gsm8k|      3|strict-match    |     5|exact_match|0.8582|±  |0.0096|
|     |       |flexible-extract|     5|exact_match|0.8878|±  |0.0087|

Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}

How to use


# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.2-qwen2-72b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.2-qwen2-72b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.2-qwen2-72b")

Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.