Text Generation
Transformers
Safetensors
PyTorch
mistral
Safetensors
text-generation-inference
Merge
7b
mistralai/Mistral-7B-Instruct-v0.1
TokenBender/pic_7B_mistral_Full_v0.2
dataset:Open-Orca/SlimOrca
dataset:HuggingFaceH4/no_robots
dataset:Intel/orca_dpo_pairs
dataset:rizerphe/glaive-function-calling-v2-zephyr
dataset:codefuse-ai/Evol-instruction-66k
Inference Endpoints
conversational
metadata
license: apache-2.0
tags:
- Safetensors
- mistral
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.1
- TokenBender/pic_7B_mistral_Full_v0.2
- transformers
- pytorch
- mistral
- text-generation
- dataset:Open-Orca/SlimOrca
- dataset:HuggingFaceH4/no_robots
- dataset:Intel/orca_dpo_pairs
- dataset:rizerphe/glaive-function-calling-v2-zephyr
- dataset:codefuse-ai/Evol-instruction-66k
- base_model:mistralai/Mistral-7B-v0.1
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.1
pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.1 is a merge of the following models:
🧩 Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.1
layer_range: [0, 32]
- model: TokenBender/pic_7B_mistral_Full_v0.2
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/pic_7B_mistral_Full_v0.2-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])