Edit model card

Original result

Not provided

After training result

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.006
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.016
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.041
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.083
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.085

Config

  • dataset: VinXray
  • original model: hustvl/yolos-tiny
  • lr: 0.0001
  • dropout_rate: 0.1
  • weight_decay: 0.0001
  • max_epochs: 1
  • train samples: 67234

Logging

Training process

{'validation_loss': tensor(7.8284, device='cuda:1'), 'validation_loss_ce': tensor(2.7671, device='cuda:1'), 'validation_loss_bbox': tensor(0.5730, device='cuda:1'), 'validation_loss_giou': tensor(1.0983, device='cuda:1'), 'validation_cardinality_error': tensor(98.8125, device='cuda:1')}
{'training_loss': tensor(1.3821, device='cuda:1'), 'train_loss_ce': tensor(0.1972, device='cuda:1'), 'train_loss_bbox': tensor(0.0681, device='cuda:1'), 'train_loss_giou': tensor(0.4223, device='cuda:1'), 'train_cardinality_error': tensor(0.4118, device='cuda:1'), 'validation_loss': tensor(1.6166, device='cuda:1'), 'validation_loss_ce': tensor(0.2388, device='cuda:1'), 'validation_loss_bbox': tensor(0.0936, device='cuda:1'), 'validation_loss_giou': tensor(0.4548, device='cuda:1'), 'validation_cardinality_error': tensor(0.5118, device='cuda:1')}

Examples

{'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])}

Example

Downloads last month
34
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.