Edit model card

Original result

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000

After training result

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.002
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.015
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.026
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.028

Config

  • dataset: NIH
  • original model: hustvl/yolos-tiny
  • lr: 0.0001
  • dropout_rate: 0.1
  • weight_decay: 0.001
  • max_epochs: 1
  • train samples: 885

Logging

Training process

{'validation_loss': tensor(7.2682, device='cuda:0'), 'validation_loss_ce': tensor(2.4654, device='cuda:0'), 'validation_loss_bbox': tensor(0.5599, device='cuda:0'), 'validation_loss_giou': tensor(1.0016, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
{'training_loss': tensor(3.1491, device='cuda:0'), 'train_loss_ce': tensor(0.3927, device='cuda:0'), 'train_loss_bbox': tensor(0.2719, device='cuda:0'), 'train_loss_giou': tensor(0.6985, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2454, device='cuda:0'), 'validation_loss_ce': tensor(0.4346, device='cuda:0'), 'validation_loss_bbox': tensor(0.1519, device='cuda:0'), 'validation_loss_giou': tensor(0.5256, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}

Examples

{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}

Example

Downloads last month
34
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.