Edit model card

Quantization with bitsandbytes
8-bit / fp4 / float16 / Safetensors
-Mediocre 馃ケ

Phind-CodeLlama-34B-Python-v1

We've fine-tuned CodeLlama-34B and CodeLlama-34B-Python on an internal Phind dataset that achieve 67.6% and 69.5% pass@1 on HumanEval, respectively. GPT-4 achieves 67%. We've applied OpenAI's decontamination methodology to our dataset to ensure result validity.

More details can be found on our blog post.

Model Details

This model is fine-tuned from CodeLlama-34B-Python and achieves 69.5% pass@1 on HumanEval.

Dataset Details

We fined-tuned on a proprietary dataset of ~80k high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. The Phind models were trained for 2 epochs, for a total of ~160k examples shown. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in three hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.

How to Get Started with the Model

Make sure to install Transformers from the main git branch:

pip install git+https://github.com/huggingface/transformers.git

How to Prompt the Model

Please note that this model is somewhat instruction-tuned, but not chat-tuned.

Do not try to use the Llama chat markup with this model. Instead, simply tell it what you want and add "\n: " at the end of your task.

For example:

Write me a linked list implementation: \n

How to reproduce HumanEval Results

To reproduce our results:


from transformers import AutoTokenizer, LlamaForCausalLM
from human_eval.data import write_jsonl, read_problems
from tqdm import tqdm

# initialize the model

model_path = "Phind/Phind-CodeLlama-34B-v1"
model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)

# HumanEval helper

def generate_one_completion(prompt: str):
    tokenizer.pad_token = tokenizer.eos_token
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)

    # Generate
    generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=256, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
    completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    completion = completion.replace(prompt, "").split("\n\n\n")[0]

    return completion

# perform HumanEval
problems = read_problems()

num_samples_per_task = 1
samples = [
    dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
    for task_id in tqdm(problems)
    for _ in range(num_samples_per_task)
]
write_jsonl("samples.jsonl", samples)

# run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox

Bias, Risks, and Limitations

This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.

Training details

  • Hardware Type: 32x A100-80GB
  • Hours used: 90 GPU-hours
  • Cloud Provider: AWS
  • Compute Region: us-east-1
Downloads last month
11
Safetensors
Model size
33.7B params
Tensor type
F32
FP16
I8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results