simran-t's picture
Add new SentenceTransformer model
68d34af verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:16186
  - loss:MultipleNegativesRankingLoss
base_model: nvidia/NV-Embed-v2
widget:
  - source_sentence: >-
      Instruct: Given a question, retrieve passages that answer the question.
      Query: what is the numeric dose of the Pembrolizumab Regimen?
    sentences:
      - >-
        Source: Radiology. Date: 2019-11-06. Context: 11/06/2019 1:03:20 PM 
        -0500496d70726f7665204865616c7468    PAGE 2 OF 3
            ________ ________ ________
        ___ _____ ___ _____ _____, __ _____-____

        IMAGING SERVICES

        Patient Name:    Exam Date/Time:    Phone _:    MRN:

        Young, _______ _______    11/06/2019 11:50 AM    ___-___-____    ______

        DOB:    Se    Account _:

        11/3/1939    Female    _________

        Pt Class:    Accession _:    Performing Department:

        Outpatient    _________    MRI - FMH

        Primary Care Provider:    Ordering Provider:    Authorizing Provider:

        ______, ____ _    ______, _______ _    ______, _______ _

        Laterality:

        9    Final - MRI BRAIN W/WO CONT
      - |
        Source: SOAP_Note. Date: 2022-01-30. Context: _12 TAB
        Prov:   01/19/22
        D: 01/23/22 1545 Patient stopped taking
        Reported Medications
        ONDANSETRON (ZOFRAN) 4 MG PO Q6H
        Metoprolol Succinate (TOPROL XL) 50 MG PO DAILY
        predniSONE 5 MG PO DAILY
        TRAMETINIB DIMETHYL SULFOXIDE (MEKINIST) 2 MG PO DAILY
        DABRAFENIB MESYLATE (TAFINLAR) 100 MG PO BID
        LOSARTAN (COZAAR) 50 MG PO DAILY
        MIRTAZAPINE (REMERON) 7.5 MG PO BEDTIME
        MED LIST INFORMATION 1 EA - CANCEL AT DISCHARGE
        Additional Medical History
        PMH:
        Stage 4 Melanoma Cancer
        Additional Surgical History
      - >-
        Source: SOAP_Note. Date: 2024-02-17. Context: 60 mg-90 mg-500 mg) qd 

        * Metoprolol Oral 24 hr Tab (Succinate) 25 mg tablet extended release 24
        hr  
         Regimens:
         Pembrolizumab Q21D (Flat Dose) (Adjuvant Melanoma, RCC)
         Hydration IV and Electrolyte Replacement Supportive Care
         
         
         
          Allergies
         
  - source_sentence: >-
      Instruct: Given a question, retrieve passages that answer the question.
      Query: how many Radiation Therapy fractions were administered?
    sentences:
      - >-
        Source: SOAP_Note. Date: 2024-10-03. Context: PET with large volume
        metastatic disease involving the bones, soft tissue, and lung parenchyma
        bilaterally.
         - Radiation therapy left shoulder, right SI joint, right femur completed 1/5/22.
         - Nivolumab and ipilimumab initiated 11/24/21. 
      - >-
        Source: SOAP_Note. Date: 2019-08-21. Context: 4 weeks, Print on Rx.,
        Instructions/Comments: nivolumab. [Updated. _______ _. _____ 08/21/2019
        13:56].

        Cancer Regimens Nivolumab Q28D (Flat Dose, Adjuvant Melanoma): C2D1.
        [_______ _. _____ 08/21/2019 15:18].I.V. access: peripheral IV, Site: 
      - >-
        Source: SOAP_Note. Date: 2023-11-27. Context: per day, down from 1.5
        ppd. He has been smoking for the past 40 years.
         He denies alcohol use.
         He worked for ____ ______ / _____ _____ _____ 
         
                       FAMILY HISTORY:
         Mother, age 94, Merkle cell carcinoma in her 70s. Daughter, age 52, brain tumor.
         Father, deceased at age 66, heart disease.
         
           REVIEW OF SYSTEMS:    A comprehensive (10+) review of systems was performed today and was negative unless noted above.
            
           VITALS: Blood pressure: 128/79, Sitting, Regular, Pulse: 110, 
  - source_sentence: >-
      Instruct: Given a question, retrieve passages that answer the question.
      Query: when did the Dabrafenib Regimen start?
    sentences:
      - >-
        Source: SOAP_Note. Date: 2018-11-29. Context: Take 1 PO daily,
        Instructions: Take at least 1 hour before or two hours after a meal.
        [______ ______ 12/26/2018 13:46].Dabrafenib mesylate, po solid: 75 mg
        Capsule Take 2 PO BID, Instructions: Take whole, at least 1 hour before
        or two hours after a 
      - >-
        Source: Pathology. Date: 2021-06-22. Context: Referral:  SECONDARY AND
        UNSPECIFIED MALIGNANT NEOPLASM OF LYMPH

        NODE, UNSPECIFIED

        FX4

        Results    HEENT:     

        HEE    BRAF V600E

        Not Expressed

        1

            M
        19    

        1.10 78

        H


        1

        *   A    

        A

        I    

        Intended Use:

        Stains were scored by a pathologist using 
      - >-
        Source: SOAP_Note. Date: 2024-09-16.
        Context:                                    Mr. _____ is married and he
        lives with his wife in _____ _____, __.
         The patient has cut back to 5 cigarettes per day, down from 1.5 ppd. He has been smoking for the past 40 years.
         He denies alcohol use.
         He worked for Duke Energy / 
  - source_sentence: >-
      Instruct: Given a question, retrieve passages that answer the question.
      Query: when was the Reexcision performed?
    sentences:
      - >-
        Source: SOAP_Note. Date: 2024-06-13. Context: scan showed cutaneous
        involvement in the skin and also right inguinal adenopathy. No evidence
        of distant metastases. Opdualag _1.
         
          10/03/2023: The patient complains of vertigo and wants to delay her next treatment. We will add Dramamine.
         
          
      - >-
        Source: Pathology. Date: 2022-03-23. Context: MD    ______, _______

        ________ ____ _________ - _______ ____    DOB: 09/14/1959

        ______    ____ __ ____ Rd    Age: 62

        __        _____ ___    Sex:  Male

        ___    _____, __ _____

        ___-___-____
            8    Accession _:  ____-_____
        Collection  Date: 03/23/2022

        ollection Date: 03/23/    MRN: _____

        Received Date: 03/23/2022

        Reported Date: 03/24/2022

        SKIN, MID FRONTAL SCALP, EXCISION -

        NO EVIDENCE OF MALIGNANCY, FINAL MARGINS FREE OF TUMOR.

        SEE COMMENT.

        Comment: Portions of deep subcutaneous fat and fascia are seen, all free
        of malignancy.


        _______ _. ______, MD

        **Electronically Signed on 24 MAR 2022 12:03PM**    8

        CLINICAL DATA:

        MID FRONTAL SCALP - EXCISION
      - |-
        Source: Genetic_Testing. Date: 2023-08-21. Context: and a    STERETCHING
        variants including genes associated wi    08 in    7/31    
        18 comination repair deficiency    * fusion    NTR2 on    
        11 (HR/HRD, microsatellite instability (MS    gain    Eston
        are umr mutational surgen 3.        Kat    
  - source_sentence: >-
      Instruct: Given a question, retrieve passages that answer the question.
      Query: what is the total dose administered in the EBRT Intensity Modulated
      Radiation Therapy?
    sentences:
      - |-
        Source: SOAP_Note. Date: 2022-10-10. Context: given. 
         
         Interim History
         
         _____ was last seen on 09/16/2022, at which time he started adjuvant immunotherapy with Keytruda q21 days. Here today for follow up and labs prior to C2 of treatment. States he is overall feeling well. Tolerated the 
      - |-
        Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.
         
         FIELDS:
         The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start 
      - |-
        Source: Radiology. Date: 2023-09-18. Context: : >60
         
         Contrast Type: OMNI 350
           Volume: 80ML
         
         Lot_: ________
         
         Exp. date: 05/26 
         Study Completed: CT CHEST W
         
         Reading Group:BCH 
          
           Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC  
         
         ________ ______
          
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on nvidia/NV-Embed-v2
    results:
      - task:
          type: patient-qa
          name: Patient QA
        dataset:
          name: ontada test
          type: ontada-test
        metrics:
          - type: cosine_accuracy@1
            value: 0.6856459330143541
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9531100478468899
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.990909090909091
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6856459330143541
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.5208931419457735
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.39693779904306226
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.22511961722488041
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4202789169894433
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8154078377762588
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9453700539226855
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1.0046297562087037
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8649347118737546
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8190546441862219
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.804978870109979
            name: Cosine Map@100

SentenceTransformer based on nvidia/NV-Embed-v2

This is a sentence-transformers model finetuned from nvidia/NV-Embed-v2. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nvidia/NV-Embed-v2
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 4096 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: NVEmbedModel 
  (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MendelAI/nv-embed-v2-ontada-twab-peft")
# Run inference
sentences = [
    'Instruct: Given a question, retrieve passages that answer the question. Query: what is the total dose administered in the EBRT Intensity Modulated Radiation Therapy?',
    'Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.\n \n FIELDS:\n The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start ',
    'Source: Radiology. Date: 2023-09-18. Context: : >60\n \n Contrast Type: OMNI 350\n   Volume: 80ML\n \n Lot_: ________\n \n Exp. date: 05/26 \n Study Completed: CT CHEST W\n \n Reading Group:BCH \n  \n   Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC  \n \n ________ ______\n  ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Patient QA

Metric Value
cosine_accuracy@1 0.6856
cosine_accuracy@3 0.9531
cosine_accuracy@5 0.9909
cosine_accuracy@10 1.0
cosine_precision@1 0.6856
cosine_precision@3 0.5209
cosine_precision@5 0.3969
cosine_precision@10 0.2251
cosine_recall@1 0.4203
cosine_recall@3 0.8154
cosine_recall@5 0.9454
cosine_recall@10 1.0046
cosine_ndcg@10 0.8649
cosine_mrr@10 0.8191
cosine_map@100 0.805

Training Details

Training Dataset

Unnamed Dataset

  • Size: 16,186 training samples
  • Columns: question and context
  • Approximate statistics based on the first 1000 samples:
    question context
    type string string
    details
    • min: 25 tokens
    • mean: 30.78 tokens
    • max: 39 tokens
    • min: 74 tokens
    • mean: 177.84 tokens
    • max: 398 tokens
  • Samples:
    question context
    Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? Source: Genetic_Testing. Date: 2022-10-07. Context: Mutational Seq DNA-Tumor Low, 6 mt/Mb NF1
    Seq DNA-Tumor Mutation Not Detected
    T In Not D
    ARID2 Seq DNA-Tumor Mutation Not Detected CNA-Seq DNA-Tumor Deletion Not Detected
    PTEN
    Seq RNA-Tumor Fusion Not Detected Seq DNA-Tumor Mutation Not Detected
    BRAF
    Amplification Not _
    CNA-Seq DNA-Tumor Detected RAC1 Seq DNA-Tumor Mutation Not Detected
    The selection of any, all, or none of the matched therapies
    Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? Source: Genetic_Testing. Date: 2021-06-04. Context: characteristics have been determined by _____ ____
    _________ ___ ____ _______. It has not been
    cleared or approved by FDA. This assay has been validated
    pursuant to the CLIA regulations and is used for clinical
    purposes.
    BRAF MUTATION ANALYSIS E
    SOURCE: LYMPH NODE
    PARAFFIN BLOCK NUMBER: -
    A4
    BRAF MUTATION ANALYSIS NOT DETECTED NOT DETECTED
    This result was reviewed and interpreted by _. ____, M.D.
    Based on Sanger sequencing analysis, no mutations
    Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? Source: Pathology. Date: 2019-12-12. Context: Receive Date: 12/12/2019
    ___ _: ________________ Accession Date: 12/12/2019
    Copy To: Report Date: 12/19/2019 18:16
    SUPPLEMENTAL REPORT
    (previous report date: 12/19/2019)
    BRAF SNAPSHOT
    Results:
    POSITIVE
    Interpretation:
    A BRAF mutation was detected in the provided specimen.
    FDA has approved TKI inhibitor vemurafenib and dabrafenib for the first-line treatment of patients with
    unresectable or metastatic melanoma whose tumors have a BRAF V600E mutation, and trametinib for tumors
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 6789
  • bf16: True
  • prompts: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 6789
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss ontada-test_cosine_ndcg@10
0 0 - 0.8431
0.0002 1 1.5826 -
0.0371 150 0.4123 -
0.0741 300 0.3077 -
0.1112 450 0.2184 -
0.1483 600 0.3291 -
0.1853 750 0.2343 -
0.2224 900 0.2506 -
0.2471 1000 - 0.8077
0.2595 1050 0.1294 -
0.2965 1200 0.0158 -
0.3336 1350 0.0189 -
0.3706 1500 0.0363 -
0.4077 1650 0.0208 -
0.4448 1800 0.475 -
0.4818 1950 0.6183 -
0.4942 2000 - 0.8482
0.5189 2100 0.4779 -
0.5560 2250 0.4194 -
0.5930 2400 0.8376 -
0.6301 2550 0.4249 -
0.6672 2700 0.9336 -
0.7042 2850 0.5351 -
0.7413 3000 1.0253 0.8551
0.7784 3150 0.3961 -
0.8154 3300 0.3881 -
0.8525 3450 0.5573 -
0.8895 3600 1.222 -
0.9266 3750 0.3032 -
0.9637 3900 0.3142 -
0.9884 4000 - 0.8645
1.0 4047 - 0.8649

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.4.0.dev0
  • Transformers: 4.46.0
  • PyTorch: 2.3.1+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}