metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16186
- loss:MultipleNegativesRankingLoss
base_model: nvidia/NV-Embed-v2
widget:
- source_sentence: >-
Instruct: Given a question, retrieve passages that answer the question.
Query: what is the numeric dose of the Pembrolizumab Regimen?
sentences:
- >-
Source: Radiology. Date: 2019-11-06. Context: 11/06/2019 1:03:20 PM
-0500496d70726f7665204865616c7468 PAGE 2 OF 3
________ ________ ________
___ _____ ___ _____ _____, __ _____-____
IMAGING SERVICES
Patient Name: Exam Date/Time: Phone _: MRN:
Young, _______ _______ 11/06/2019 11:50 AM ___-___-____ ______
DOB: Se Account _:
11/3/1939 Female _________
Pt Class: Accession _: Performing Department:
Outpatient _________ MRI - FMH
Primary Care Provider: Ordering Provider: Authorizing Provider:
______, ____ _ ______, _______ _ ______, _______ _
Laterality:
9 Final - MRI BRAIN W/WO CONT
- |
Source: SOAP_Note. Date: 2022-01-30. Context: _12 TAB
Prov: 01/19/22
D: 01/23/22 1545 Patient stopped taking
Reported Medications
ONDANSETRON (ZOFRAN) 4 MG PO Q6H
Metoprolol Succinate (TOPROL XL) 50 MG PO DAILY
predniSONE 5 MG PO DAILY
TRAMETINIB DIMETHYL SULFOXIDE (MEKINIST) 2 MG PO DAILY
DABRAFENIB MESYLATE (TAFINLAR) 100 MG PO BID
LOSARTAN (COZAAR) 50 MG PO DAILY
MIRTAZAPINE (REMERON) 7.5 MG PO BEDTIME
MED LIST INFORMATION 1 EA - CANCEL AT DISCHARGE
Additional Medical History
PMH:
Stage 4 Melanoma Cancer
Additional Surgical History
- >-
Source: SOAP_Note. Date: 2024-02-17. Context: 60 mg-90 mg-500 mg) qd
* Metoprolol Oral 24 hr Tab (Succinate) 25 mg tablet extended release 24
hr
Regimens:
Pembrolizumab Q21D (Flat Dose) (Adjuvant Melanoma, RCC)
Hydration IV and Electrolyte Replacement Supportive Care
Allergies
- source_sentence: >-
Instruct: Given a question, retrieve passages that answer the question.
Query: how many Radiation Therapy fractions were administered?
sentences:
- >-
Source: SOAP_Note. Date: 2024-10-03. Context: PET with large volume
metastatic disease involving the bones, soft tissue, and lung parenchyma
bilaterally.
- Radiation therapy left shoulder, right SI joint, right femur completed 1/5/22.
- Nivolumab and ipilimumab initiated 11/24/21.
- >-
Source: SOAP_Note. Date: 2019-08-21. Context: 4 weeks, Print on Rx.,
Instructions/Comments: nivolumab. [Updated. _______ _. _____ 08/21/2019
13:56].
Cancer Regimens Nivolumab Q28D (Flat Dose, Adjuvant Melanoma): C2D1.
[_______ _. _____ 08/21/2019 15:18].I.V. access: peripheral IV, Site:
- >-
Source: SOAP_Note. Date: 2023-11-27. Context: per day, down from 1.5
ppd. He has been smoking for the past 40 years.
He denies alcohol use.
He worked for ____ ______ / _____ _____ _____
FAMILY HISTORY:
Mother, age 94, Merkle cell carcinoma in her 70s. Daughter, age 52, brain tumor.
Father, deceased at age 66, heart disease.
REVIEW OF SYSTEMS: A comprehensive (10+) review of systems was performed today and was negative unless noted above.
VITALS: Blood pressure: 128/79, Sitting, Regular, Pulse: 110,
- source_sentence: >-
Instruct: Given a question, retrieve passages that answer the question.
Query: when did the Dabrafenib Regimen start?
sentences:
- >-
Source: SOAP_Note. Date: 2018-11-29. Context: Take 1 PO daily,
Instructions: Take at least 1 hour before or two hours after a meal.
[______ ______ 12/26/2018 13:46].Dabrafenib mesylate, po solid: 75 mg
Capsule Take 2 PO BID, Instructions: Take whole, at least 1 hour before
or two hours after a
- >-
Source: Pathology. Date: 2021-06-22. Context: Referral: SECONDARY AND
UNSPECIFIED MALIGNANT NEOPLASM OF LYMPH
NODE, UNSPECIFIED
FX4
Results HEENT:
HEE BRAF V600E
Not Expressed
1
M
19
1.10 78
H
1
* A
A
I
Intended Use:
Stains were scored by a pathologist using
- >-
Source: SOAP_Note. Date: 2024-09-16.
Context: Mr. _____ is married and he
lives with his wife in _____ _____, __.
The patient has cut back to 5 cigarettes per day, down from 1.5 ppd. He has been smoking for the past 40 years.
He denies alcohol use.
He worked for Duke Energy /
- source_sentence: >-
Instruct: Given a question, retrieve passages that answer the question.
Query: when was the Reexcision performed?
sentences:
- >-
Source: SOAP_Note. Date: 2024-06-13. Context: scan showed cutaneous
involvement in the skin and also right inguinal adenopathy. No evidence
of distant metastases. Opdualag _1.
10/03/2023: The patient complains of vertigo and wants to delay her next treatment. We will add Dramamine.
- >-
Source: Pathology. Date: 2022-03-23. Context: MD ______, _______
________ ____ _________ - _______ ____ DOB: 09/14/1959
______ ____ __ ____ Rd Age: 62
__ _____ ___ Sex: Male
___ _____, __ _____
___-___-____
8 Accession _: ____-_____
Collection Date: 03/23/2022
ollection Date: 03/23/ MRN: _____
Received Date: 03/23/2022
Reported Date: 03/24/2022
SKIN, MID FRONTAL SCALP, EXCISION -
NO EVIDENCE OF MALIGNANCY, FINAL MARGINS FREE OF TUMOR.
SEE COMMENT.
Comment: Portions of deep subcutaneous fat and fascia are seen, all free
of malignancy.
_______ _. ______, MD
**Electronically Signed on 24 MAR 2022 12:03PM** 8
CLINICAL DATA:
MID FRONTAL SCALP - EXCISION
- |-
Source: Genetic_Testing. Date: 2023-08-21. Context: and a STERETCHING
variants including genes associated wi 08 in 7/31
18 comination repair deficiency * fusion NTR2 on
11 (HR/HRD, microsatellite instability (MS gain Eston
are umr mutational surgen 3. Kat
- source_sentence: >-
Instruct: Given a question, retrieve passages that answer the question.
Query: what is the total dose administered in the EBRT Intensity Modulated
Radiation Therapy?
sentences:
- |-
Source: SOAP_Note. Date: 2022-10-10. Context: given.
Interim History
_____ was last seen on 09/16/2022, at which time he started adjuvant immunotherapy with Keytruda q21 days. Here today for follow up and labs prior to C2 of treatment. States he is overall feeling well. Tolerated the
- |-
Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.
FIELDS:
The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start
- |-
Source: Radiology. Date: 2023-09-18. Context: : >60
Contrast Type: OMNI 350
Volume: 80ML
Lot_: ________
Exp. date: 05/26
Study Completed: CT CHEST W
Reading Group:BCH
Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC
________ ______
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on nvidia/NV-Embed-v2
results:
- task:
type: patient-qa
name: Patient QA
dataset:
name: ontada test
type: ontada-test
metrics:
- type: cosine_accuracy@1
value: 0.6856459330143541
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9531100478468899
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.990909090909091
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6856459330143541
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5208931419457735
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.39693779904306226
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.22511961722488041
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4202789169894433
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8154078377762588
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9453700539226855
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0046297562087037
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8649347118737546
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8190546441862219
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.804978870109979
name: Cosine Map@100
SentenceTransformer based on nvidia/NV-Embed-v2
This is a sentence-transformers model finetuned from nvidia/NV-Embed-v2. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nvidia/NV-Embed-v2
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 4096 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: NVEmbedModel
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MendelAI/nv-embed-v2-ontada-twab-peft")
# Run inference
sentences = [
'Instruct: Given a question, retrieve passages that answer the question. Query: what is the total dose administered in the EBRT Intensity Modulated Radiation Therapy?',
'Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.\n \n FIELDS:\n The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start ',
'Source: Radiology. Date: 2023-09-18. Context: : >60\n \n Contrast Type: OMNI 350\n Volume: 80ML\n \n Lot_: ________\n \n Exp. date: 05/26 \n Study Completed: CT CHEST W\n \n Reading Group:BCH \n \n Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC \n \n ________ ______\n ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Patient QA
- Dataset:
ontada-test
- Evaluated with
PatientQAEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6856 |
cosine_accuracy@3 | 0.9531 |
cosine_accuracy@5 | 0.9909 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.6856 |
cosine_precision@3 | 0.5209 |
cosine_precision@5 | 0.3969 |
cosine_precision@10 | 0.2251 |
cosine_recall@1 | 0.4203 |
cosine_recall@3 | 0.8154 |
cosine_recall@5 | 0.9454 |
cosine_recall@10 | 1.0046 |
cosine_ndcg@10 | 0.8649 |
cosine_mrr@10 | 0.8191 |
cosine_map@100 | 0.805 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 16,186 training samples
- Columns:
question
andcontext
- Approximate statistics based on the first 1000 samples:
question context type string string details - min: 25 tokens
- mean: 30.78 tokens
- max: 39 tokens
- min: 74 tokens
- mean: 177.84 tokens
- max: 398 tokens
- Samples:
question context Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF?
Source: Genetic_Testing. Date: 2022-10-07. Context: Mutational Seq DNA-Tumor Low, 6 mt/Mb NF1
Seq DNA-Tumor Mutation Not Detected
T In Not D
ARID2 Seq DNA-Tumor Mutation Not Detected CNA-Seq DNA-Tumor Deletion Not Detected
PTEN
Seq RNA-Tumor Fusion Not Detected Seq DNA-Tumor Mutation Not Detected
BRAF
Amplification Not _
CNA-Seq DNA-Tumor Detected RAC1 Seq DNA-Tumor Mutation Not Detected
The selection of any, all, or none of the matched therapiesInstruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF?
Source: Genetic_Testing. Date: 2021-06-04. Context: characteristics have been determined by _____ ____
_________ ___ ____ _______. It has not been
cleared or approved by FDA. This assay has been validated
pursuant to the CLIA regulations and is used for clinical
purposes.
BRAF MUTATION ANALYSIS E
SOURCE: LYMPH NODE
PARAFFIN BLOCK NUMBER: - A4
BRAF MUTATION ANALYSIS NOT DETECTED NOT DETECTED
This result was reviewed and interpreted by _. ____, M.D.
Based on Sanger sequencing analysis, no mutationsInstruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF?
Source: Pathology. Date: 2019-12-12. Context: Receive Date: 12/12/2019
___ _: ________________ Accession Date: 12/12/2019
Copy To: Report Date: 12/19/2019 18:16
SUPPLEMENTAL REPORT
(previous report date: 12/19/2019)
BRAF SNAPSHOT
Results:
POSITIVE
Interpretation:
A BRAF mutation was detected in the provided specimen.
FDA has approved TKI inhibitor vemurafenib and dabrafenib for the first-line treatment of patients with
unresectable or metastatic melanoma whose tumors have a BRAF V600E mutation, and trametinib for tumors - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 6789bf16
: Trueprompts
: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 6789data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | ontada-test_cosine_ndcg@10 |
---|---|---|---|
0 | 0 | - | 0.8431 |
0.0002 | 1 | 1.5826 | - |
0.0371 | 150 | 0.4123 | - |
0.0741 | 300 | 0.3077 | - |
0.1112 | 450 | 0.2184 | - |
0.1483 | 600 | 0.3291 | - |
0.1853 | 750 | 0.2343 | - |
0.2224 | 900 | 0.2506 | - |
0.2471 | 1000 | - | 0.8077 |
0.2595 | 1050 | 0.1294 | - |
0.2965 | 1200 | 0.0158 | - |
0.3336 | 1350 | 0.0189 | - |
0.3706 | 1500 | 0.0363 | - |
0.4077 | 1650 | 0.0208 | - |
0.4448 | 1800 | 0.475 | - |
0.4818 | 1950 | 0.6183 | - |
0.4942 | 2000 | - | 0.8482 |
0.5189 | 2100 | 0.4779 | - |
0.5560 | 2250 | 0.4194 | - |
0.5930 | 2400 | 0.8376 | - |
0.6301 | 2550 | 0.4249 | - |
0.6672 | 2700 | 0.9336 | - |
0.7042 | 2850 | 0.5351 | - |
0.7413 | 3000 | 1.0253 | 0.8551 |
0.7784 | 3150 | 0.3961 | - |
0.8154 | 3300 | 0.3881 | - |
0.8525 | 3450 | 0.5573 | - |
0.8895 | 3600 | 1.222 | - |
0.9266 | 3750 | 0.3032 | - |
0.9637 | 3900 | 0.3142 | - |
0.9884 | 4000 | - | 0.8645 |
1.0 | 4047 | - | 0.8649 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.46.0
- PyTorch: 2.3.1+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}