Mengkedalai's picture
Upload tokenizer
81da920 verified
|
raw
history blame
2.84 kB
metadata
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
  - common_voice_17_0
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xlsr-Mongolian-cv17-base
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: mn
          split: validation
          args: mn
        metrics:
          - type: wer
            value: 0.7902951968892054
            name: Wer

wav2vec2-large-xlsr-Mongolian-cv17-base

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9632
  • Wer: 0.7903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.1940 40 13.1486 1.0009
No log 2.3881 80 7.6639 1.0
No log 3.5821 120 3.4345 1.0
No log 4.7761 160 3.1527 1.0
No log 5.9701 200 3.1223 1.0
No log 7.1642 240 3.1137 1.0
No log 8.3582 280 3.1017 1.0
No log 9.5522 320 3.0909 1.0
No log 10.7463 360 3.0363 1.0
5.1112 11.9403 400 2.8364 1.0
5.1112 13.1343 440 2.0134 1.0078
5.1112 14.3284 480 1.3866 1.0511
5.1112 15.5224 520 1.1292 0.9320
5.1112 16.7164 560 1.0117 0.9017
5.1112 17.9104 600 0.9756 0.8339
5.1112 19.1045 640 0.9632 0.7903

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1