File size: 1,984 Bytes
1c88386
 
 
 
 
 
 
 
00bd443
1c88386
 
 
 
 
 
 
 
 
 
 
 
 
00bd443
 
90b2835
1c88386
 
 
 
 
 
 
 
 
f2b0ad8
90b2835
1c88386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a59e32
 
f2b0ad8
 
 
1c88386
 
 
 
 
00bd443
1c88386
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mgasior
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: F1
      type: f1
      value: 0.18897637795275588
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-mgasior

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 46788898816.0
- F1: 0.1890

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 9    | 46788898816.0   | 0.1890 |
| 40845207142.4 | 2.0   | 18   | 46788898816.0   | 0.1732 |
| 41037873152.0 | 3.0   | 27   | 46788898816.0   | 0.1732 |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0