Michelvh's picture
Update README.md
57daccc
|
raw
history blame
3.92 kB
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
model-index:
  - name: peft-flan-t5-mc-question-generation-eduqg
    results: []
pipeline_tag: text2text-generation
inference:
  parameters:
    max_length: 256
    num_beams: 4
    length_penalty: 1.5
    no_repeat_ngram_size: 3
    early_stopping: true

peft-flan-t5-mc-question-generation-eduqg

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss
2.548 0.15 100 1.9606
2.0409 0.29 200 1.5282
1.6969 0.44 300 1.2851
1.4654 0.59 400 1.1794
1.3643 0.73 500 1.1358
1.3305 0.88 600 1.1068
1.2952 1.03 700 1.0873
1.211 1.17 800 1.0703
1.2123 1.32 900 1.0590
1.229 1.47 1000 1.0505
1.2136 1.61 1100 1.0464
1.1835 1.76 1200 1.0402
1.217 1.91 1300 1.0319
1.1986 2.05 1400 1.0300
1.1586 2.2 1500 1.0257
1.1634 2.35 1600 1.0214
1.1661 2.49 1700 1.0170
1.166 2.64 1800 1.0157
1.1663 2.79 1900 1.0126
1.1367 2.93 2000 1.0107
1.1576 3.08 2100 1.0100
1.1314 3.23 2200 1.0070
1.1198 3.37 2300 1.0049
1.1712 3.52 2400 1.0019
1.1369 3.67 2500 1.0028
1.1604 3.82 2600 1.0005
1.1101 3.96 2700 0.9977
1.1227 4.11 2800 0.9968
1.1247 4.26 2900 0.9963
1.1211 4.4 3000 0.9952
1.1398 4.55 3100 0.9939
1.1333 4.7 3200 0.9928
1.1367 4.84 3300 0.9918
1.1124 4.99 3400 0.9919
1.1298 5.14 3500 0.9905
1.117 5.28 3600 0.9904
1.1237 5.43 3700 0.9886
1.1016 5.58 3800 0.9889
1.1492 5.72 3900 0.9887
1.1032 5.87 4000 0.9882
1.0838 6.02 4100 0.9879
1.0807 6.16 4200 0.9880
1.1062 6.31 4300 0.9879
1.131 6.46 4400 0.9873
1.1159 6.6 4500 0.9872
1.1361 6.75 4600 0.9868
1.1051 6.9 4700 0.9867

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3