|
--- |
|
language: zh |
|
license: creativeml-openrail-m |
|
|
|
tags: |
|
|
|
- diffusion |
|
- zh |
|
- Chinese |
|
--- |
|
|
|
|
|
|
|
# Chinese-Style-Stable-Diffusion-2-v0.1 |
|
|
|
| ![cyberpunk](examples/cyberpunk.jpeg) | ![shiba](examples/shiba.jpeg) | ![ds](examples/ds.jpeg) | |
|
| ------------------------------------- | ----------------------------- | ------------------------------- | |
|
| ![waitan](examples/waitan.jpeg) | ![gf](examples/gf.jpeg) | ![ssh](examples/ssh.jpeg) | |
|
| ![cat](examples/cat.jpeg) | ![robot](examples/robot.jpeg) | ![castle](examples/castle.jpeg) | |
|
|
|
大概是Huggingface 🤗社区首个开源的Stable diffusion 2 中文模型。该模型基于[stable diffusion V2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1)模型,在约500万条的中国风格筛选过的中文数据上进行微调,数据来源于多个开源数据集如[LAION-5B](https://laion.ai/blog/laion-5b/), [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/), [Zero](https://zero.so.com/)和一些网络数据。 |
|
|
|
Probably the first open sourced Chinese Stable Diffusion 2 model in Huggingface🤗 community. This model is finetuned based on [stable diffusion V2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) with 5M chinese style filtered data. Dataset is composed of several different chinese open source dataset such as [LAION-5B](https://laion.ai/blog/laion-5b/), [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/), [Zero](https://zero.so.com/) and some web data. |
|
|
|
|
|
|
|
# <u>Model Details</u> |
|
|
|
#### Text Encoder |
|
|
|
文本编码器使用冻结参数的[lyua1225/clip-huge-zh-75k-steps-bs4096](https://huggingface.co/lyua1225/clip-huge-zh-75k-steps-bs4096)。 |
|
|
|
Text encoder is frozen [lyua1225/clip-huge-zh-75k-steps-bs4096](https://huggingface.co/lyua1225/clip-huge-zh-75k-steps-bs4096) . |
|
|
|
#### Unet |
|
|
|
在筛选过的的500万中文数据集上训练了150K steps,使用指数移动平均值(EMA)做原绘画能力保留,使模型能够在中文风格和原绘画能力之间获得权衡。 |
|
|
|
Training on 5M chinese style filtered data for 150k steps. Exponential moving average(EMA) is applied to keep the original Stable Diffusion 2 drawing capability and reach a balance between chinese style and original drawing capability. |
|
|
|
|
|
## <u>Usage</u> |
|
|
|
因为使用了customized tokenizer, 所以需要优先加载一下tokenizer, 并传入trust_remote_code=True |
|
|
|
Customized Tokenizer should be loaded first with 'trust_remote_code=True'. |
|
|
|
```py |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer_id = "lyua1225/clip-huge-zh-75k-steps-bs4096" |
|
sd2_id = "Midu/chinese-style-stable-diffusion-2-v0.1" |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, trust_remote_code=True) |
|
pipe = StableDiffusionPipeline.from_pretrained(sd2_id, torch_dtype=torch.float16, tokenizer=tokenizer) |
|
pipe.to("cuda") |
|
|
|
image = pipe("赛博朋克风格的城市街道,8K分辨率,CG渲染", guidance_scale=10, num_inference_steps=20).images[0] |
|
image.save("cyberpunk.jpeg") |
|
|
|
``` |
|
|
|
|