Edit model card

fine_tuned_bert_dreadit

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6081
  • Accuracy: 0.7528

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0037 1.0 178 1.8515 0.7163
0.0017 2.0 356 1.7404 0.7163
0.001 3.0 534 1.2895 0.7921
0.0012 4.0 712 1.3320 0.7669
0.0005 5.0 890 1.3646 0.7949
0.0002 6.0 1068 1.5997 0.7809
0.0001 7.0 1246 1.5772 0.7753
0.0003 8.0 1424 1.7599 0.7556
0.0001 9.0 1602 1.7494 0.7640
0.0001 10.0 1780 1.9942 0.7556
0.0001 11.0 1958 1.9370 0.75
0.0 12.0 2136 1.9671 0.7781
0.0001 13.0 2314 2.1223 0.7640
0.0 14.0 2492 2.1653 0.7472
0.0001 15.0 2670 1.9924 0.75
0.0 16.0 2848 2.1778 0.7528
0.0 17.0 3026 2.3010 0.7612
0.0 18.0 3204 2.2210 0.7669
0.0 19.0 3382 2.3333 0.7556
0.0 20.0 3560 1.8684 0.7697
0.0976 21.0 3738 1.9417 0.7584
0.0 22.0 3916 2.1385 0.7472
0.0 23.0 4094 1.9774 0.7669
0.0 24.0 4272 2.0778 0.75
0.0001 25.0 4450 2.4343 0.7331
0.0 26.0 4628 2.1331 0.7528
0.0 27.0 4806 2.2511 0.7640
0.0 28.0 4984 2.2422 0.7584
0.0 29.0 5162 2.1228 0.7669
0.0006 30.0 5340 2.0973 0.7725
0.0 31.0 5518 1.9392 0.7809
0.0 32.0 5696 2.2996 0.7107
0.4186 33.0 5874 2.2191 0.7584
0.0 34.0 6052 2.2233 0.75
0.0 35.0 6230 2.2263 0.7584
0.0 36.0 6408 2.2205 0.7584
0.0 37.0 6586 2.4488 0.7444
0.0 38.0 6764 2.5616 0.7360
0.0 39.0 6942 2.5941 0.7416
0.0 40.0 7120 2.5129 0.7528
0.0 41.0 7298 2.4978 0.7360
0.0 42.0 7476 2.3089 0.7528
0.0 43.0 7654 2.5056 0.7472
0.0 44.0 7832 2.5786 0.7416
0.0 45.0 8010 2.2956 0.7640
0.0 46.0 8188 2.5265 0.7472
0.0 47.0 8366 2.4396 0.7584
0.0 48.0 8544 2.5547 0.7472
0.0 49.0 8722 2.5556 0.7528
0.0 50.0 8900 2.5732 0.7528
0.0 51.0 9078 2.5062 0.7556
0.0 52.0 9256 2.5504 0.7528
0.0 53.0 9434 2.5602 0.7528
0.0 54.0 9612 2.5627 0.7472
0.0 55.0 9790 2.6575 0.75
0.0 56.0 9968 2.6239 0.7528
0.0 57.0 10146 2.4757 0.7697
0.0 58.0 10324 2.4862 0.7612
0.0 59.0 10502 3.2968 0.6938
0.0 60.0 10680 2.5265 0.7472
0.0 61.0 10858 2.1426 0.7978
0.0 62.0 11036 2.4674 0.7640
0.0 63.0 11214 2.3496 0.7640
0.0 64.0 11392 2.4010 0.7556
0.0 65.0 11570 2.4081 0.7725
0.0 66.0 11748 2.4022 0.7753
0.0 67.0 11926 2.2982 0.7753
0.0 68.0 12104 2.4628 0.7612
0.0 69.0 12282 2.5764 0.7640
0.0 70.0 12460 2.4056 0.7781
0.0 71.0 12638 2.3265 0.7865
0.0 72.0 12816 2.5182 0.7640
0.0 73.0 12994 2.3872 0.7556
0.0 74.0 13172 2.7281 0.7388
0.0 75.0 13350 2.4907 0.7612
0.0 76.0 13528 2.5323 0.7584
0.0 77.0 13706 2.2055 0.7837
0.0 78.0 13884 2.2227 0.7865
0.0 79.0 14062 2.2794 0.7753
0.0 80.0 14240 2.2886 0.7753
0.0 81.0 14418 2.8320 0.7444
0.0 82.0 14596 2.8252 0.7472
0.0 83.0 14774 2.2986 0.7837
0.0 84.0 14952 2.7879 0.7416
0.0 85.0 15130 2.7926 0.7416
0.0 86.0 15308 2.7656 0.7472
0.0 87.0 15486 2.7336 0.7444
0.0 88.0 15664 2.7320 0.7444
0.0 89.0 15842 2.7402 0.7444
0.0 90.0 16020 2.7415 0.7444
0.0 91.0 16198 2.7406 0.7444
0.0 92.0 16376 2.7327 0.7444
0.0 93.0 16554 2.4082 0.7781
0.0 94.0 16732 2.4077 0.7753
0.0 95.0 16910 2.4185 0.7781
0.0 96.0 17088 2.6096 0.7528
0.0 97.0 17266 2.5907 0.7669
0.0 98.0 17444 2.6030 0.7556
0.0 99.0 17622 2.6081 0.7528
0.0 100.0 17800 2.6081 0.7528

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.