MikaSie's picture
End of training
36b7d3a verified
|
raw
history blame
3.56 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
datasets:
  - eur-lex-sum
model-index:
  - name: PegasusX_no_extraction_V1
    results: []

PegasusX_no_extraction_V1

This model is a fine-tuned version of google/pegasus-x-base on the eur-lex-sum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss
4.9176 0.9927 68 3.9239
3.8267 2.0 137 3.2236
3.2452 2.9927 205 2.6649
2.7272 4.0 274 2.2625
2.4546 4.9927 342 2.0656
2.2504 6.0 411 1.9579
2.1713 6.9927 479 1.8934
2.0563 8.0 548 1.8536
2.023 8.9927 616 1.8237
1.9452 10.0 685 1.8021
1.9365 10.9927 753 1.7839
1.8701 12.0 822 1.7746
1.8756 12.9927 890 1.7641
1.8261 14.0 959 1.7505
1.827 14.9927 1027 1.7454
1.7861 16.0 1096 1.7353
1.7943 16.9927 1164 1.7280
1.7501 18.0 1233 1.7276
1.7606 18.9927 1301 1.7176
1.7264 20.0 1370 1.7119
1.7371 20.9927 1438 1.6997
1.7008 22.0 1507 1.7067
1.7101 22.9927 1575 1.7002
1.6865 24.0 1644 1.6997
1.6967 24.9927 1712 1.6914
1.6648 26.0 1781 1.6915
1.6761 26.9927 1849 1.6893
1.6432 28.0 1918 1.6918
1.6688 28.9927 1986 1.6863
1.6289 30.0 2055 1.6858
1.6475 30.9927 2123 1.6878
1.6176 32.0 2192 1.6838
1.6435 32.9927 2260 1.6835
1.6139 34.0 2329 1.6802
1.638 34.9927 2397 1.6806
1.6099 36.0 2466 1.6830
1.6359 36.9927 2534 1.6778
1.6056 38.0 2603 1.6813
1.6281 38.9927 2671 1.6789
1.6132 39.7080 2720 1.6795

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.19.1