leaderboard-pr-bot's picture
Adding Evaluation Results
b9fa6f4 verified
|
raw
history blame
6.44 kB
---
language:
- en
- zh
license: other
library_name: transformers
tags:
- mistral
- qwen
- qwen1.5
- qwen2
license_name: qwen
license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
pipeline_tag: text-generation
inference: false
model-index:
- name: Qwen1.5-7B-Chat_mistral
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 26.69
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.78
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.33
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Minami-su/Qwen1.5-7B-Chat_mistral
name: Open LLM Leaderboard
---
This is the Mistral version of [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) model by Alibaba Cloud.
The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py).
I have made modifications to make it compatible with qwen1.5.
This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/mistral_qwen2.py
## special
1.Before using this model, you need to modify modeling_mistral.py in transformers library
2.vim /root/anaconda3/envs/train/lib/python3.9/site-packages/transformers/models/mistral/modeling_mistral.py
3.find MistralAttention,
4.modify q,k,v,o bias=False ----->, bias=config.attention_bias
Before:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/AKj_fwEoLUKWZ4mViYW-q.png)
After:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/A2gSwq9l6Zx8X1qegtgvE.png)
## Differences between qwen2 mistral and qwen2 llamafy
Compared to qwen2 llamafy,qwen2 mistral can use sliding window attention,qwen2 mistral is faster than qwen2 llamafy, and the context length is better
Usage:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral")
model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs,max_length=32768, streamer=streamer)
```
## Test
load in 4bit
```
hf-causal (pretrained=Qwen1.5-7B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.4155|± |0.0144|
| | |acc_norm|0.4480|± |0.0145|
|truthfulqa_mc| 1|mc1 |0.3513|± |0.0167|
| | |mc2 |0.5165|± |0.0159|
|winogrande | 0|acc |0.6330|± |0.0135|
```
load in 4bit
```
hf-causal (pretrained=Qwen1.5-7B-Chat_mistral), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.4172|± |0.0144|
| | |acc_norm|0.4480|± |0.0145|
|truthfulqa_mc| 1|mc1 |0.3488|± |0.0167|
| | |mc2 |0.5161|± |0.0159|
|winogrande | 0|acc |0.6306|± |0.0136|
```
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Minami-su__Qwen1.5-7B-Chat_mistral)
| Metric |Value|
|---------------------------------|----:|
|Avg. |30.49|
|AI2 Reasoning Challenge (25-Shot)|24.49|
|HellaSwag (10-Shot) |26.69|
|MMLU (5-Shot) |25.78|
|TruthfulQA (0-shot) |52.33|
|Winogrande (5-shot) |53.67|
|GSM8k (5-shot) | 0.00|