t5-small-finetuned-ro-to-en
This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set:
- Loss: 1.5877
- Bleu: 13.4499
- Gen Len: 17.5073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
1.6167 | 0.05 | 2000 | 1.8649 | 9.7029 | 17.5753 |
1.4551 | 0.1 | 4000 | 1.7810 | 10.6382 | 17.5358 |
1.3723 | 0.16 | 6000 | 1.7369 | 11.1285 | 17.5158 |
1.3373 | 0.21 | 8000 | 1.7086 | 11.6173 | 17.5013 |
1.2935 | 0.26 | 10000 | 1.6890 | 12.0641 | 17.5038 |
1.2632 | 0.31 | 12000 | 1.6670 | 12.3012 | 17.5253 |
1.2463 | 0.37 | 14000 | 1.6556 | 12.3991 | 17.5153 |
1.2272 | 0.42 | 16000 | 1.6442 | 12.7392 | 17.4732 |
1.2052 | 0.47 | 18000 | 1.6328 | 12.8446 | 17.5143 |
1.1985 | 0.52 | 20000 | 1.6233 | 13.0892 | 17.4807 |
1.1821 | 0.58 | 22000 | 1.6153 | 13.1529 | 17.4952 |
1.1791 | 0.63 | 24000 | 1.6079 | 13.2964 | 17.5088 |
1.1698 | 0.68 | 26000 | 1.6038 | 13.3548 | 17.4842 |
1.154 | 0.73 | 28000 | 1.5957 | 13.3012 | 17.5053 |
1.1634 | 0.79 | 30000 | 1.5931 | 13.4203 | 17.5083 |
1.1487 | 0.84 | 32000 | 1.5893 | 13.3959 | 17.5123 |
1.1495 | 0.89 | 34000 | 1.5875 | 13.3745 | 17.4902 |
1.1458 | 0.94 | 36000 | 1.5877 | 13.4129 | 17.5043 |
1.1465 | 1.0 | 38000 | 1.5877 | 13.4499 | 17.5073 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.