MohammadOthman's picture
Update README.md
226c266 verified
|
raw
history blame
2.06 kB
metadata
language: en
datasets:
  - truthful_qa
license: apache-2.0
tags:
  - qlora
  - falcon
  - fine-tuning
  - nlp
  - causal-lm
  - h100
library_name: peft
base_model: tiiuae/falcon-7b-instruct

Falcon-7B QLoRA Fine-Tuned on TruthfulQA

Model Description

This model is a fine-tuned version of the tiiuae/falcon-7b-instruct using the QLoRA technique on the TruthfulQA dataset.

Training

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Load the base model
base_model_name = "tiiuae/falcon-7b-instruct"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)

# Load the adapter and apply it to the base model
adapter_repo_name = "MohammadOthman/falcon-7b-qlora-truthfulqa"
model = PeftModel.from_pretrained(base_model, adapter_repo_name)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Function to generate text
def generate_text(prompt, max_length=100, num_return_sequences=1):
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    # Generate text
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_length=max_length,
        num_return_sequences=num_return_sequences,
        do_sample=True,
        temperature=0.7
    )
    
    # Decode and print the output
    for i, output in enumerate(outputs):
        print(f"Generated Text {i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")

# Example usage
prompt = "Once upon a time in a land far, far away"
generate_text(prompt)