metadata
license: apache-2.0
base_model: keeeeenw/MicroLlama
tags:
- generated_from_trainer
model-index:
- name: medusa-microllama_305M_stage1_v2
results: []
medusa-microllama_305M_stage1_v2
This model is a fine-tuned version of keeeeenw/MicroLlama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0312 | 0.0244 | 40 | 3.0649 |
3.026 | 0.0489 | 80 | 2.9528 |
2.8781 | 0.0733 | 120 | 2.9163 |
2.8075 | 0.0978 | 160 | 2.9268 |
2.9164 | 0.1222 | 200 | 2.9027 |
2.7724 | 0.1467 | 240 | 2.8815 |
2.8856 | 0.1711 | 280 | 2.8871 |
2.718 | 0.1955 | 320 | 2.8749 |
2.6479 | 0.2200 | 360 | 2.8815 |
2.6194 | 0.2444 | 400 | 2.8872 |
2.7954 | 0.2689 | 440 | 2.8773 |
2.7008 | 0.2933 | 480 | 2.8572 |
2.6876 | 0.3178 | 520 | 2.8560 |
2.879 | 0.3422 | 560 | 2.8665 |
2.7377 | 0.3666 | 600 | 2.8482 |
2.7459 | 0.3911 | 640 | 2.8512 |
2.8036 | 0.4155 | 680 | 2.8712 |
2.89 | 0.4400 | 720 | 2.8614 |
2.7898 | 0.4644 | 760 | 2.8570 |
2.891 | 0.4888 | 800 | 2.8384 |
2.717 | 0.5133 | 840 | 2.8344 |
2.8589 | 0.5377 | 880 | 2.8342 |
2.8944 | 0.5622 | 920 | 2.8040 |
2.85 | 0.5866 | 960 | 2.8012 |
2.8057 | 0.6111 | 1000 | 2.8063 |
2.6772 | 0.6355 | 1040 | 2.7957 |
2.7905 | 0.6599 | 1080 | 2.7822 |
2.7579 | 0.6844 | 1120 | 2.7922 |
2.7625 | 0.7088 | 1160 | 2.7763 |
2.85 | 0.7333 | 1200 | 2.7607 |
2.8447 | 0.7577 | 1240 | 2.7611 |
2.8027 | 0.7822 | 1280 | 2.7501 |
2.461 | 0.8066 | 1320 | 2.7201 |
2.6232 | 0.8310 | 1360 | 2.6906 |
2.6998 | 0.8555 | 1400 | 2.6763 |
2.7609 | 0.8799 | 1440 | 2.6603 |
2.6003 | 0.9044 | 1480 | 2.6549 |
2.2626 | 0.9288 | 1520 | 2.6484 |
2.5896 | 0.9533 | 1560 | 2.6389 |
2.5704 | 0.9777 | 1600 | 2.6245 |
2.1629 | 1.0021 | 1640 | 2.6164 |
2.1719 | 1.0266 | 1680 | 2.6152 |
2.2115 | 1.0510 | 1720 | 2.6134 |
2.359 | 1.0755 | 1760 | 2.6127 |
2.3486 | 1.0999 | 1800 | 2.6066 |
2.1864 | 1.1244 | 1840 | 2.6041 |
2.1692 | 1.1488 | 1880 | 2.6023 |
2.1455 | 1.1732 | 1920 | 2.5998 |
2.195 | 1.1977 | 1960 | 2.5914 |
2.3458 | 1.2221 | 2000 | 2.5883 |
2.1419 | 1.2466 | 2040 | 2.5827 |
2.1329 | 1.2710 | 2080 | 2.5743 |
2.2733 | 1.2954 | 2120 | 2.5686 |
2.2662 | 1.3199 | 2160 | 2.5654 |
2.399 | 1.3443 | 2200 | 2.5637 |
2.1518 | 1.3688 | 2240 | 2.5563 |
2.1115 | 1.3932 | 2280 | 2.5483 |
2.2048 | 1.4177 | 2320 | 2.5434 |
2.2658 | 1.4421 | 2360 | 2.5390 |
2.2186 | 1.4665 | 2400 | 2.5366 |
2.1467 | 1.4910 | 2440 | 2.5321 |
2.2352 | 1.5154 | 2480 | 2.5281 |
2.2507 | 1.5399 | 2520 | 2.5250 |
2.1987 | 1.5643 | 2560 | 2.5221 |
2.2234 | 1.5888 | 2600 | 2.5205 |
2.0497 | 1.6132 | 2640 | 2.5181 |
2.1133 | 1.6376 | 2680 | 2.5166 |
2.1047 | 1.6621 | 2720 | 2.5153 |
2.1578 | 1.6865 | 2760 | 2.5148 |
2.1869 | 1.7110 | 2800 | 2.5135 |
2.0953 | 1.7354 | 2840 | 2.5126 |
2.1413 | 1.7599 | 2880 | 2.5119 |
2.1333 | 1.7843 | 2920 | 2.5115 |
2.2001 | 1.8087 | 2960 | 2.5114 |
2.1889 | 1.8332 | 3000 | 2.5111 |
2.2247 | 1.8576 | 3040 | 2.5110 |
2.2258 | 1.8821 | 3080 | 2.5108 |
2.157 | 1.9065 | 3120 | 2.5107 |
2.181 | 1.9310 | 3160 | 2.5107 |
2.1441 | 1.9554 | 3200 | 2.5107 |
2.4097 | 1.9798 | 3240 | 2.5107 |
Framework versions
- Transformers 4.43.0
- Pytorch 2.3.1
- Datasets 2.15.0
- Tokenizers 0.19.1