MoralesTP's picture
End of training
44a8afc verified
|
raw
history blame
2.28 kB
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-small-samsum-summary
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 43.8792
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-samsum-summary
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6317
- Rouge1: 43.8792
- Rouge2: 19.5266
- Rougel: 36.2843
- Rougelsum: 39.8895
- Gen Len: 16.8803
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.8261 | 1.0 | 1842 | 1.6670 | 42.9616 | 18.7768 | 35.5551 | 39.3237 | 17.1136 |
| 1.7348 | 2.0 | 3684 | 1.6477 | 43.1943 | 19.0967 | 35.9006 | 39.446 | 16.9414 |
| 1.6883 | 3.0 | 5526 | 1.6371 | 43.5598 | 19.4071 | 36.0767 | 39.8372 | 16.8694 |
| 1.6559 | 4.0 | 7368 | 1.6359 | 43.4343 | 19.2178 | 36.0452 | 39.6163 | 17.1477 |
| 1.6413 | 5.0 | 9210 | 1.6317 | 43.8792 | 19.5266 | 36.2843 | 39.8895 | 16.8803 |
### Framework versions
- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.14.7
- Tokenizers 0.15.2